Home
Class 12
MATHS
Solve the following integration int (...

Solve the following integration
`int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos x - \sin x}{\cos x + \sin x} (2 + 2 \sin 2x) \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand First, we can factor out the constant from the second term in the integrand: \[ \int \frac{\cos x - \sin x}{\cos x + \sin x} (2(1 + \sin 2x)) \, dx = 2 \int \frac{\cos x - \sin x}{\cos x + \sin x} (1 + \sin 2x) \, dx. \] ### Step 2: Rewrite \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the integrand as: \[ 2 \int \frac{\cos x - \sin x}{\cos x + \sin x} \left(1 + 2 \sin x \cos x\right) \, dx. \] ### Step 3: Expand the integrand Now, we can distribute the terms in the integrand: \[ = 2 \int \left(\frac{\cos x - \sin x}{\cos x + \sin x} + \frac{2(\cos x - \sin x) \sin x \cos x}{\cos x + \sin x}\right) \, dx. \] ### Step 4: Simplify the first term The first term simplifies to: \[ \frac{\cos x - \sin x}{\cos x + \sin x}. \] ### Step 5: Simplify the second term For the second term, we can observe that: \[ \frac{2(\cos x - \sin x) \sin x \cos x}{\cos x + \sin x} = \frac{2 \sin x \cos x (\cos x - \sin x)}{\cos x + \sin x}. \] ### Step 6: Use the identity Notice that \(1 + \sin 2x = 1 + 2 \sin x \cos x\) can be rewritten using the identity \(1 + \sin 2x = \cos^2 x + \sin^2 x + 2 \sin x \cos x = (\cos x + \sin x)^2\). ### Step 7: Substitute in the integral Now we can substitute this back into our integral: \[ = 2 \int \frac{(\cos x - \sin x)(\cos x + \sin x)^2}{\cos x + \sin x} \, dx. \] This simplifies to: \[ = 2 \int (\cos x - \sin x)(\cos x + \sin x) \, dx. \] ### Step 8: Apply the difference of squares Using the difference of squares, we have: \[ = 2 \int (\cos^2 x - \sin^2 x) \, dx. \] ### Step 9: Use the double angle identity Using the identity \(\cos^2 x - \sin^2 x = \cos 2x\): \[ = 2 \int \cos 2x \, dx. \] ### Step 10: Integrate The integral of \(\cos 2x\) is: \[ = 2 \cdot \frac{1}{2} \sin 2x + C = \sin 2x + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{\cos x - \sin x}{\cos x + \sin x} (2 + 2 \sin 2x) \, dx = \sin 2x + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following integration int sqrt(1-sin 2x)dx

Solve the following integration int(sin 2x+sin 5x-sin 3x)/(cos x+1-2 sin^(2)2x)dx

Evaluate the following integration int (sin 4x)/(sin x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Solve the following integration int (sin x+cos x)/(sqrt(1+sin 2x))*dx , here (sin x + cos x) gt 0

int(dx)/(cos x(sin x+2))

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals Evaluate int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx