Home
Class 12
MATHS
int(3sinxcos^2x-sin^3x)dx...

`int(3sinxcos^2x-sin^3x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3\sin x \cos^2 x - \sin^3 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral as follows: \[ I = \int (3\sin x \cos^2 x - \sin^3 x) \, dx \] ### Step 2: Substitute \( \cos^2 x \) Recall that \( \cos^2 x = 1 - \sin^2 x \). We can substitute this into the integral: \[ I = \int \left(3\sin x (1 - \sin^2 x) - \sin^3 x\right) \, dx \] ### Step 3: Expand the integrand Now, we expand the expression inside the integral: \[ I = \int \left(3\sin x - 3\sin^3 x - \sin^3 x\right) \, dx \] This simplifies to: \[ I = \int \left(3\sin x - 4\sin^3 x\right) \, dx \] ### Step 4: Separate the integral We can separate the integral into two parts: \[ I = \int 3\sin x \, dx - \int 4\sin^3 x \, dx \] ### Step 5: Integrate \( 3\sin x \) The integral of \( 3\sin x \) is straightforward: \[ \int 3\sin x \, dx = -3\cos x \] ### Step 6: Integrate \( 4\sin^3 x \) To integrate \( 4\sin^3 x \), we can use the identity \( \sin^3 x = \sin x (1 - \cos^2 x) \): \[ \int 4\sin^3 x \, dx = \int 4\sin x (1 - \cos^2 x) \, dx \] This can be rewritten as: \[ \int 4\sin x \, dx - \int 4\sin x \cos^2 x \, dx \] The first integral is: \[ \int 4\sin x \, dx = -4\cos x \] For the second integral, we can use the substitution \( u = \cos x \), \( du = -\sin x \, dx \): \[ \int 4\sin x \cos^2 x \, dx = -4 \int u^2 \, du = -4 \cdot \frac{u^3}{3} = -\frac{4\cos^3 x}{3} \] ### Step 7: Combine the results Now, we can combine all parts: \[ I = -3\cos x - \left(-4\cos x - \frac{4\cos^3 x}{3}\right) \] This simplifies to: \[ I = -3\cos x + 4\cos x + \frac{4\cos^3 x}{3} = \cos x + \frac{4\cos^3 x}{3} \] ### Step 8: Final result Thus, the final result of the integral is: \[ I = \cos x + \frac{4}{3}\cos^3 x + C \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sin x .sin2x.sin3x dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: (i) int(sin^3x-cos^3x)/(sin^2xcos^2x)\ dx (ii) int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)\ dx

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals

Evaluate: (i) int(sin2x)/(acos^2x+bsin^2x)\ dx (ii) int(cosx)/(2+3sinx)\ dx

Evaluate: (i) int(sin2x)/(sin5xsin3x)\ dx (ii) int(1+cotx)/(x+logsinx)\ dx

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .

Evaluate: int1/(sinxcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx