Home
Class 12
MATHS
Solve the following integration int s...

Solve the following integration
`int sqrt(1-sin 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 - \sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \sqrt{1 - \sin 2x} \, dx \] We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite \( 1 - \sin 2x \) as: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x \] ### Step 2: Use Pythagorean identity Next, we can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to express \( 1 - 2 \sin x \cos x \): \[ 1 - 2 \sin x \cos x = \cos^2 x + \sin^2 x - 2 \sin x \cos x \] This can be rearranged as: \[ = (\cos x - \sin x)^2 \] ### Step 3: Substitute back into the integral Now we substitute this back into our integral: \[ \int \sqrt{1 - \sin 2x} \, dx = \int \sqrt{(\cos x - \sin x)^2} \, dx \] Since the square root of a square is the absolute value, we have: \[ = \int |\cos x - \sin x| \, dx \] ### Step 4: Determine the sign of the expression To proceed, we need to determine when \( \cos x - \sin x \) is positive or negative. The expression \( \cos x - \sin x = 0 \) when \( \tan x = 1 \), which occurs at \( x = \frac{\pi}{4} + n\pi \) for integer \( n \). For \( 0 \leq x < \frac{\pi}{4} \), \( \cos x - \sin x \) is positive, and for \( \frac{\pi}{4} < x < \frac{\pi}{2} \), it is negative. Thus, we can split our integral based on these intervals. ### Step 5: Solve the integral For the interval \( [0, \frac{\pi}{4}] \): \[ \int (\cos x - \sin x) \, dx = \int \cos x \, dx - \int \sin x \, dx \] Calculating these gives: \[ = \sin x + \cos x + C \] For the interval \( [\frac{\pi}{4}, \frac{\pi}{2}] \): \[ \int -(\cos x - \sin x) \, dx = -\int (\cos x - \sin x) \, dx = -(\sin x + \cos x) + C \] ### Final Result Thus, the final result of the integral \( \int \sqrt{1 - \sin 2x} \, dx \) is: \[ \int \sqrt{1 - \sin 2x} \, dx = \begin{cases} \sin x + \cos x + C & \text{for } 0 \leq x < \frac{\pi}{4} \\ -\sin x - \cos x + C & \text{for } \frac{\pi}{4} < x < \frac{\pi}{2} \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following integration int (dx)/(1+sin x)

int sqrt(1+sin (x/2))dx

Solve the following integration int cos x^(@)dx

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

Evaluate the following integration int (sin 4x)/(sin x)dx

Solve the following integration int (sin x+cos x)/(sqrt(1+sin 2x))*dx , here (sin x + cos x) gt 0

Solve the following integration int(sin 2x+sin 5x-sin 3x)/(cos x+1-2 sin^(2)2x)dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

int sqrt(1+sin(x/2))dx=

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx