Home
Class 12
MATHS
int(cos 4x-1)/(cot x-tanx)dx is equal to...

`int(cos 4x-1)/(cot x-tanx)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the denominator The denominator can be rewritten using the identities for cotangent and tangent: \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \] Thus, we have: \[ I = \int \frac{\cos 4x - 1}{\frac{\cos^2 x - \sin^2 x}{\sin x \cos x}} \, dx = \int \frac{(\cos 4x - 1) \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] ### Step 2: Use trigonometric identities We can use the identity \( \cos 4x = 2\cos^2 2x - 1 \): \[ \cos 4x - 1 = 2\cos^2 2x - 2 = 2(\cos^2 2x - 1) = -2\sin^2 2x \] Substituting this back into the integral gives: \[ I = \int \frac{-2\sin^2 2x \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] ### Step 3: Simplify the integral Now, we can express \( \cos^2 x - \sin^2 x \) as \( \cos 2x \): \[ I = \int \frac{-2\sin^2 2x \sin x \cos x}{\cos 2x} \, dx \] Next, we can express \( \sin x \cos x \) as \( \frac{1}{2} \sin 2x \): \[ I = \int \frac{-2\sin^2 2x \cdot \frac{1}{2} \sin 2x}{\cos 2x} \, dx = -\int \frac{\sin^3 2x}{\cos 2x} \, dx \] ### Step 4: Use substitution Let \( t = \cos 2x \). Then, \( dt = -2\sin 2x \, dx \) or \( dx = \frac{dt}{-2\sin 2x} \). We also have \( \sin 2x = \sqrt{1 - t^2} \): \[ I = -\int \frac{\sin^3 2x}{\cos 2x} \cdot \frac{dt}{-2\sin 2x} = \frac{1}{2} \int \frac{\sin^2 2x}{\cos 2x} \, dt \] This simplifies to: \[ I = \frac{1}{2} \int \frac{1 - \cos^2 2x}{\cos 2x} \, dt = \frac{1}{2} \int \left( \frac{1}{\cos 2x} - \cos 2x \right) dt \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{1}{2} \left( \ln |\sec 2x| - \frac{1}{2} \sin^2 2x \right) + C \] ### Final Step: Substitute back Substituting back \( t = \cos 2x \): \[ I = \frac{1}{2} \left( \ln |\sec 2x| - \frac{1}{2} (1 - \cos^2 2x) \right) + C \] ### Conclusion Thus, the final answer for the integral is: \[ I = \frac{1}{2} \ln |\sec 2x| - \frac{1}{4} (1 - \cos^2 2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(cos4x-1)/(cotx-tanx)dx is equal to

int(cos4x-1)/(cotx-tanx)dx is equal to (A) 1/2ln|sec2x|-1/4cos^2 2x+c (B) 1/2ln|sec2x|+1/4cos^2x+c (C) 1/2ln|cos2x|-1/4cos^2 2x+c (D) 1/2ln|cos2x|+1/4cos^2x+c

int(1+cos4x)/(cotx-tanx)\ dx

int(1+cos4x)/(cotx-tanx)dx

int(cos8x-1)/(tan2x-cot2x)dx

int(1)/(cos x - sin x )dx is equal to

"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

int( x + sin x )/( 1+ cos x) dx is equal to

The value of int(xtanxsecx)/((tanx-x)^(2))dx is equal to