Home
Class 12
MATHS
int[sinalphasin(x-alpha)+sin^2(x/2-alpha...

`int[sinalphasin(x-alpha)+sin^2(x/2-alpha)]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \sin \alpha \sin(x - \alpha) + \sin^2\left(\frac{x}{2} - \alpha\right) \right) dx \), we can break it down into manageable parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \left( \sin \alpha \sin(x - \alpha) + \sin^2\left(\frac{x}{2} - \alpha\right) \right) dx \] ### Step 2: Separate the Integral We can separate the integral into two parts: \[ I = \int \sin \alpha \sin(x - \alpha) \, dx + \int \sin^2\left(\frac{x}{2} - \alpha\right) \, dx \] ### Step 3: Integrate the First Part For the first part, we can factor out \(\sin \alpha\) since it is a constant: \[ I_1 = \sin \alpha \int \sin(x - \alpha) \, dx \] The integral of \(\sin(x - \alpha)\) is: \[ \int \sin(x - \alpha) \, dx = -\cos(x - \alpha) \] Thus, \[ I_1 = -\sin \alpha \cos(x - \alpha) \] ### Step 4: Integrate the Second Part For the second part, we use the identity for \(\sin^2\): \[ \sin^2 a = \frac{1 - \cos(2a)}{2} \] Applying this to \(\sin^2\left(\frac{x}{2} - \alpha\right)\): \[ \sin^2\left(\frac{x}{2} - \alpha\right) = \frac{1 - \cos\left(x - 2\alpha\right)}{2} \] Thus, we can rewrite the integral: \[ I_2 = \int \sin^2\left(\frac{x}{2} - \alpha\right) \, dx = \int \frac{1 - \cos\left(x - 2\alpha\right)}{2} \, dx \] This can be separated as: \[ I_2 = \frac{1}{2} \int 1 \, dx - \frac{1}{2} \int \cos\left(x - 2\alpha\right) \, dx \] The integrals evaluate to: \[ \int 1 \, dx = x \quad \text{and} \quad \int \cos\left(x - 2\alpha\right) \, dx = \sin\left(x - 2\alpha\right) \] Thus, \[ I_2 = \frac{x}{2} - \frac{1}{2} \sin\left(x - 2\alpha\right) \] ### Step 5: Combine the Results Now we combine \(I_1\) and \(I_2\): \[ I = I_1 + I_2 = -\sin \alpha \cos(x - \alpha) + \frac{x}{2} - \frac{1}{2} \sin\left(x - 2\alpha\right) \] ### Step 6: Add the Constant of Integration Finally, we add the constant of integration \(C\): \[ I = -\sin \alpha \cos(x - \alpha) + \frac{x}{2} - \frac{1}{2} \sin\left(x - 2\alpha\right) + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \left( \sin \alpha \sin(x - \alpha) + \sin^2\left(\frac{x}{2} - \alpha\right) \right) dx = -\sin \alpha \cos(x - \alpha) + \frac{x}{2} - \frac{1}{2} \sin\left(x - 2\alpha\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin3alpha=4sinalphasin(x+alpha)sin(x-alpha),w h e r ealpha!=npi,n in Z

int(sin2x)/(sin(x-alpha)sin(x+alpha)) dx

The set of values of x satisfying the equation sin3alpha=4sinalphasin(x+alpha)sin(x-alpha) is (a) npi+-pi/4,AAn in Z (b) npi+-pi/3,AAn in Z (c) npi+-pi/9,AAn in Z (d) npi+-pi/(12),AAn in Z

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

int sqrt(sin(x-alpha)/sin(x+alpha)) dx

int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

int(dx)/(sin(x-alpha)sin(x-beta)

Evaluate: int(sin(x-alpha))/(sin(x+alpha))\ dx

Evaluate: (i) int(sin(x-a))/(sin(x-b))\ dx (ii) int(sin(x-alpha))/(sin(x+alpha))\ dx

int x sin^2(x/2) dx