Home
Class 12
MATHS
Solve the following integration int(s...

Solve the following integration
`int(sin 2x+sin 5x-sin 3x)/(cos x+1-2 sin^(2)2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin 2x + \sin 5x - \sin 3x}{\cos x + 1 - 2 \sin^2 2x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We know that \[ 1 - 2 \sin^2 \theta = \cos 2\theta. \] Thus, we can rewrite the denominator: \[ \cos x + 1 - 2 \sin^2 2x = \cos x + 1 - \cos 4x. \] ### Step 2: Rewrite the Integral Now, we can express the integral as: \[ I = \int \frac{\sin 2x + \sin 5x - \sin 3x}{\cos x + 1 - \cos 4x} \, dx. \] ### Step 3: Use Sine Difference Formula We can use the sine difference formula: \[ \sin a - \sin b = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right). \] Applying this to \(\sin 5x - \sin 3x\): Let \(a = 5x\) and \(b = 3x\): \[ \sin 5x - \sin 3x = 2 \cos\left(4x\right) \sin\left(x\right). \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin 2x + 2 \cos 4x \sin x}{\cos x + 1 - \cos 4x} \, dx. \] ### Step 4: Factor Out Common Terms Now, we can factor out \(2 \sin x\): \[ I = \int \frac{2 \sin x \left(\cos 4x + \sin 2x\right)}{\cos x + 1 - \cos 4x} \, dx. \] ### Step 5: Cancel Common Terms Notice that \(\cos x + 1 - \cos 4x\) can be simplified. Let's denote \(D = \cos x + 1 - \cos 4x\). Thus, we have: \[ I = 2 \int \sin x \, dx. \] ### Step 6: Integrate The integral of \(\sin x\) is: \[ \int \sin x \, dx = -\cos x + C. \] So, \[ I = 2(-\cos x) + C = -2\cos x + C. \] ### Final Answer Thus, the final result of the integral is: \[ I = -2\cos x + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following integration int sqrt(1-sin 2x)dx

Solve the following integration int (dx)/(1+sin x)

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

Evaluate the following integration int (sin 4x)/(sin x)dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

int sin x .sin2x.sin3x dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals Evaluate int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx

Solve the following integration int (sin x+cos x)/(sqrt(1+sin 2x))*dx , here (sin x + cos x) gt 0