Home
Class 12
MATHS
Evaluate the following integrals in...

Evaluate the following integrals
`int (x^(3)dx)/(16x^(8)-25)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^3 \, dx}{16x^8 - 25}, \] we can follow these steps: ### Step 1: Rewrite the Denominator We can rewrite the denominator \(16x^8 - 25\) as a difference of squares: \[ 16x^8 - 25 = (4x^4)^2 - 5^2. \] ### Step 2: Substitution Let \(t = 4x^4\). Then, we differentiate \(t\) with respect to \(x\): \[ dt = 16x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{16x^3}. \] ### Step 3: Substitute in the Integral Now, substitute \(t\) and \(dx\) back into the integral: \[ I = \int \frac{x^3}{(4x^4)^2 - 5^2} \cdot \frac{dt}{16x^3} = \frac{1}{16} \int \frac{dt}{t^2 - 25}. \] ### Step 4: Simplify the Integral Now, we can simplify the integral: \[ I = \frac{1}{16} \int \frac{dt}{t^2 - 5^2}. \] ### Step 5: Use Partial Fraction Decomposition Using the identity for the difference of squares, we can express the integral as: \[ \frac{1}{t^2 - 25} = \frac{1}{(t - 5)(t + 5)}. \] We can use partial fractions: \[ \frac{1}{(t - 5)(t + 5)} = \frac{A}{t - 5} + \frac{B}{t + 5}. \] Multiplying through by the denominator: \[ 1 = A(t + 5) + B(t - 5). \] Setting \(t = 5\) gives \(A = \frac{1}{10}\) and setting \(t = -5\) gives \(B = -\frac{1}{10}\). ### Step 6: Rewrite the Integral Thus, we can rewrite the integral as: \[ I = \frac{1}{16} \int \left( \frac{1/10}{t - 5} - \frac{1/10}{t + 5} \right) dt. \] ### Step 7: Integrate Now we can integrate: \[ I = \frac{1}{16} \cdot \frac{1}{10} \left( \ln |t - 5| - \ln |t + 5| \right) + C. \] ### Step 8: Substitute Back Substituting back \(t = 4x^4\): \[ I = \frac{1}{160} \left( \ln |4x^4 - 5| - \ln |4x^4 + 5| \right) + C. \] ### Step 9: Combine Logarithms Using properties of logarithms: \[ I = \frac{1}{160} \ln \left| \frac{4x^4 - 5}{4x^4 + 5} \right| + C. \] Thus, the final answer is: \[ \int \frac{x^3 \, dx}{16x^8 - 25} = \frac{1}{160} \ln \left| \frac{4x^4 - 5}{4x^4 + 5} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int_0^2(x+3)dx

Evaluate the following integrals . int_(a)^(b)x^(3)dx

Evaluate the following integrals : int_(-1)^1(x+3)dx

Evaluate the following integrals int (x dx)/(9-16x^(4))

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following Integrals : int (dx)/(1+x^(3))

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integration int cos^(3)x dx

Evaluate the following Integrals. int (cot x ) dx