Home
Class 12
MATHS
int (1)/(4e^x+9e^(-x))dx=.......

`int (1)/(4e^x+9e^(-x))dx=....`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{4e^x + 9e^{-x}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \frac{1}{4e^x + 9e^{-x}} \, dx \] We can rewrite \( e^{-x} \) as \( \frac{1}{e^x} \): \[ I = \int \frac{1}{4e^x + \frac{9}{e^x}} \, dx \] 2. **Combine the Terms**: To combine the terms in the denominator, we can multiply the numerator and denominator by \( e^x \): \[ I = \int \frac{e^x}{4e^{2x} + 9} \, dx \] 3. **Substitution**: Let \( t = e^x \). Then, \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \): \[ I = \int \frac{1}{4t^2 + 9} \, dt \] 4. **Recognize the Form**: The integral \( \int \frac{1}{4t^2 + 9} \, dt \) can be recognized as a standard integral of the form \( \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \). Here, \( a^2 = 9 \) implies \( a = 3 \): \[ I = \frac{1}{3} \tan^{-1} \left( \frac{t}{\frac{3}{2}} \right) + C \] 5. **Substituting Back**: Since \( t = e^x \), we substitute back: \[ I = \frac{1}{3} \tan^{-1} \left( \frac{2e^x}{3} \right) + C \] 6. **Final Result**: Thus, the final result of the integral is: \[ \int \frac{1}{4e^x + 9e^{-x}} \, dx = \frac{1}{6} \tan^{-1} \left( \frac{2e^x}{3} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (e^(x))/(e^(x) + e^(-x))dx

inte^x/(e^x+e^(-x))dx

int(1)/(e^(-x)) dx

Evaluate: int1/(e^x+e^(-x))\ dx

Evaluate: int1/(e^x+e^(-x))\ dx

Evaluate: int1/(e^x+e^(-x))\ dx

Evaluate: int1/(e^x+e^(-x))\ dx

int(e^x)/((1+e^x)(2+e^x))dx

int (e^x)/e^(2x-4) dx

(iii) int(e^(x)-1)/(1-e^(-x))dx