Home
Class 12
MATHS
Evaluate the following integrals in...

Evaluate the following integrals
`int (2^(x))/(sqrt(4^(x)-25))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{2^x}{\sqrt{4^x - 25}} \, dx, \] we can follow these steps: ### Step 1: Rewrite the integral We can express \(4^x\) in terms of \(2^x\): \[ 4^x = (2^2)^x = (2^x)^2. \] Thus, we can rewrite the integral as: \[ I = \int \frac{2^x}{\sqrt{(2^x)^2 - 25}} \, dx. \] ### Step 2: Substitution Let \(t = 2^x\). Then, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = 2^x \ln(2) \implies dx = \frac{dt}{2^x \ln(2)} = \frac{dt}{t \ln(2)}. \] ### Step 3: Substitute in the integral Now substitute \(t\) and \(dx\) into the integral: \[ I = \int \frac{t}{\sqrt{t^2 - 25}} \cdot \frac{dt}{t \ln(2)} = \frac{1}{\ln(2)} \int \frac{1}{\sqrt{t^2 - 25}} \, dt. \] ### Step 4: Evaluate the integral The integral \(\int \frac{1}{\sqrt{t^2 - 25}} \, dt\) can be evaluated using the formula: \[ \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C. \] Here, \(a = 5\). Thus, we have: \[ \int \frac{1}{\sqrt{t^2 - 25}} \, dt = \ln |t + \sqrt{t^2 - 25}| + C. \] ### Step 5: Substitute back Substituting back into our expression for \(I\): \[ I = \frac{1}{\ln(2)} \left( \ln |t + \sqrt{t^2 - 25}| + C \right). \] Now substituting \(t = 2^x\): \[ I = \frac{1}{\ln(2)} \left( \ln |2^x + \sqrt{(2^x)^2 - 25}| + C \right). \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{\ln(2)} \ln \left( 2^x + \sqrt{4^x - 25} \right) + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int((1+x)^3)/(sqrt(x))dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integral : int((x+1)(x-2))/(sqrt(x))dx

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Evaluate the following Integrals. int x^(2) a^(x) dx

Evaluate the following integrals int (x-3)/sqrt(3-2x-x^(2))dx

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following integral: int_2^4(x^2+x)/(sqrt(2x+1))dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx