Home
Class 12
MATHS
Evaluate: int(8x-11)/sqrt(5+2x-x^(2))dx...

Evaluate: `int(8x-11)/sqrt(5+2x-x^(2))`dx

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{8x - 11}{\sqrt{5 + 2x - x^2}} \, dx, \] we can break it down into manageable parts. ### Step 1: Rewrite the integrand We start by rewriting the numerator: \[ 8x - 11 = 8(x - 1) - 3. \] This allows us to express the integral as: \[ I = \int \frac{8(x - 1) - 3}{\sqrt{5 + 2x - x^2}} \, dx = \int \frac{8(x - 1)}{\sqrt{5 + 2x - x^2}} \, dx - \int \frac{3}{\sqrt{5 + 2x - x^2}} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{8(x - 1)}{\sqrt{5 + 2x - x^2}} \, dx, \] \[ I_2 = \int \frac{3}{\sqrt{5 + 2x - x^2}} \, dx. \] ### Step 2: Simplify \( I_1 \) For \( I_1 \): \[ I_1 = 8 \int \frac{x - 1}{\sqrt{5 + 2x - x^2}} \, dx. \] Now, we can use a substitution. Let: \[ u = 5 + 2x - x^2. \] Then, we differentiate \( u \): \[ \frac{du}{dx} = 2 - 2x \implies du = (2 - 2x) \, dx \implies dx = \frac{du}{2 - 2x} = \frac{du}{2(1 - x)}. \] Now, we can express \( x - 1 \) in terms of \( u \): From \( u = 5 + 2x - x^2 \), we can rearrange to find \( x \): \[ x^2 - 2x + (u - 5) = 0. \] Using the quadratic formula: \[ x = \frac{2 \pm \sqrt{4 - 4(u - 5)}}{2} = 1 \pm \sqrt{9 - u}. \] We take \( x - 1 = \sqrt{9 - u} \) (considering the positive root for simplicity). Substituting back into \( I_1 \): \[ I_1 = 8 \int \frac{\sqrt{9 - u}}{\sqrt{u}} \cdot \frac{du}{2(1 - (1 + \sqrt{9 - u}))} = 4 \int \frac{\sqrt{9 - u}}{\sqrt{u}} \, du. \] ### Step 3: Solve \( I_2 \) For \( I_2 \): \[ I_2 = 3 \int \frac{1}{\sqrt{5 + 2x - x^2}} \, dx. \] Using the same substitution \( u = 5 + 2x - x^2 \): \[ I_2 = 3 \int \frac{1}{\sqrt{u}} \cdot \frac{du}{2 - 2x} = \frac{3}{2} \int \frac{du}{\sqrt{u}}. \] ### Step 4: Integrate both parts Now we can integrate both parts: 1. For \( I_1 \): \[ I_1 = 4 \int \frac{\sqrt{9 - u}}{\sqrt{u}} \, du. \] This integral can be solved using trigonometric substitution or other methods. 2. For \( I_2 \): \[ I_2 = \frac{3}{2} \cdot 2\sqrt{u} = 3\sqrt{u}. \] ### Step 5: Combine results Finally, we combine the results of \( I_1 \) and \( I_2 \) and substitute back for \( u \): \[ I = I_1 + I_2 = 4 \int \frac{\sqrt{9 - (5 + 2x - x^2)}}{\sqrt{5 + 2x - x^2}} \, dx + 3\sqrt{5 + 2x - x^2} + C. \] ### Final Answer The final answer will be: \[ I = 4 \int \frac{\sqrt{4 - (2x - 1)^2}}{\sqrt{5 + 2x - x^2}} \, dx + 3\sqrt{5 + 2x - x^2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(3x+1)/(sqrt(5-2x-x^2))dx

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate : int(x+2)/(sqrt(5-4x-x^(2)))dx .

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate int (x-1)/sqrt(x^2-x) dx

Evaluate : int(dx)/(sqrt(5-4x-2x^2))

Evaluate: int(x-1)sqrt(1+x+x^(2)) dx

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx