Home
Class 12
MATHS
Evaluate the following integrals int...

Evaluate the following integrals `int (x-3)/sqrt(3-2x-x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x - 3}{\sqrt{3 - 2x - x^2}} \, dx, \] we can break it down into two parts: \[ I = \int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx - \int \frac{3}{\sqrt{3 - 2x - x^2}} \, dx. \] Let's denote the first integral as \( I_1 \) and the second as \( I_2 \): 1. **Evaluate \( I_1 = \int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx \)**: To simplify the integral, we can rewrite the expression under the square root. Notice that: \[ 3 - 2x - x^2 = -(x^2 + 2x - 3) = -(x + 3)(x - 1). \] Thus, we have: \[ I_1 = \int \frac{x}{\sqrt{-(x + 3)(x - 1)}} \, dx. \] Now, we can multiply and divide by \(-2\): \[ I_1 = -\frac{1}{2} \int \frac{-2x}{\sqrt{-(x + 3)(x - 1)}} \, dx. \] We can rewrite this as: \[ I_1 = -\frac{1}{2} \int \frac{-2x}{\sqrt{-(x + 3)(x - 1)}} \, dx. \] Now, we can use substitution. Let \( t = 3 - 2x - x^2 \), then: \[ dt = (-2 - 2x) \, dx \implies dx = \frac{dt}{-2(1 + x)}. \] Substitute \( t \) into the integral to get: \[ I_1 = -\frac{1}{2} \int \frac{-2x}{\sqrt{t}} \cdot \frac{dt}{-2(1 + x)}. \] This simplifies to: \[ I_1 = \frac{1}{2} \int \frac{x}{\sqrt{t}} \, dt. \] 2. **Evaluate \( I_2 = \int \frac{3}{\sqrt{3 - 2x - x^2}} \, dx \)**: This integral can be simplified similarly: \[ I_2 = 3 \int \frac{1}{\sqrt{3 - 2x - x^2}} \, dx. \] Using the same substitution \( t = 3 - 2x - x^2 \), we can evaluate this integral as well. The integral \( I_2 \) can be evaluated using trigonometric substitution or recognizing it as a standard integral form. 3. **Combine the results**: After evaluating both \( I_1 \) and \( I_2 \), we can combine them to find the final result for \( I \). ### Final Answer: \[ I = -\sqrt{3 - 2x - x^2} - 4 \sin^{-1}\left(\frac{x + 1}{2}\right) + C, \] where \( C \) is the constant of integration.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Evaluate the following integrals : int_0^2(x+3)dx

Evaluate the following integrals : int((1+x)^3)/(sqrt(x))dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integrals Evaluate int (2x-4)sqrt(4+3x-x^(2))dx .

Find int (dx)/sqrt(3-2x-x^2)

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integral: int_1^2|x-3|dx

Evaluate the following integral int(x^(2)+2x+3)/(sqrt(x^(2)+x+1))dx