Home
Class 12
MATHS
Evaluate the following integrals in...

Evaluate the following integrals
`int sqrt((a-x)/(x-b))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{\frac{a-x}{x-b}} \, dx \), we will follow a systematic approach using a trigonometric substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = a \cos^2 \theta + b \sin^2 \theta \). This substitution helps to simplify the integral. - **Hint**: This substitution is chosen to express \( a-x \) and \( x-b \) in terms of trigonometric functions. 2. **Differentiate**: Compute \( dx \): \[ dx = \frac{d}{d\theta}(a \cos^2 \theta + b \sin^2 \theta) = -2a \cos \theta \sin \theta + 2b \sin \theta \cos \theta = (2b - 2a) \sin \theta \cos \theta \, d\theta = (b-a) \sin 2\theta \, d\theta. \] - **Hint**: Use the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \) to simplify the expression. 3. **Substituting in the Integral**: Substitute \( x \) and \( dx \) into the integral: \[ I = \int \sqrt{\frac{a - (a \cos^2 \theta + b \sin^2 \theta)}{(a \cos^2 \theta + b \sin^2 \theta) - b}} \cdot (b-a) \sin 2\theta \, d\theta. \] Simplifying the expression inside the square root: \[ a - (a \cos^2 \theta + b \sin^2 \theta) = a(1 - \cos^2 \theta) - b \sin^2 \theta = a \sin^2 \theta - b \sin^2 \theta = (a-b) \sin^2 \theta. \] And for the denominator: \[ (a \cos^2 \theta + b \sin^2 \theta) - b = a \cos^2 \theta - b(1 - \sin^2 \theta) = a \cos^2 \theta - b + b \sin^2 \theta = a \cos^2 \theta + (b-a) \sin^2 \theta. \] - **Hint**: Rearranging terms helps to simplify the integral. 4. **Final Form of the Integral**: Now, the integral becomes: \[ I = (b-a) \int \sqrt{\frac{(a-b) \sin^2 \theta}{a \cos^2 \theta + (b-a) \sin^2 \theta}} \cdot \sin 2\theta \, d\theta. \] - **Hint**: Factor out constants and simplify the integral further. 5. **Simplifying Further**: The integral can be simplified using trigonometric identities. We can express \( \sin^2 \theta \) and \( \cos^2 \theta \) in terms of \( \tan \theta \) to facilitate integration. - **Hint**: Consider using \( \tan \theta \) substitution to express everything in terms of \( \tan \theta \). 6. **Integration**: After simplification, we can integrate using standard integral formulas. The integral of \( \sin^2 \theta \) can be expressed in terms of \( \theta \) and \( \cos 2\theta \). - **Hint**: Use the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \). 7. **Back Substitution**: Once the integral is evaluated, substitute back \( \theta \) in terms of \( x \). Recall that: \[ \tan \theta = \sqrt{\frac{a-x}{x-b}}. \] - **Hint**: Use the inverse tangent function to revert back to \( x \). 8. **Final Result**: The final result will be expressed in terms of \( x \) and will include a constant of integration \( C \). ### Final Answer: \[ I = (b-a) \left( \text{expression involving } x + C \right). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int sqrt((1-x)/(1+x))dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: int_0^1sqrt((1-x)/(1+x))dx

Evaluate the following integrals: int_0^1sqrt((1-x)/(1+x))dx

Evaluate the following integrals: int_0^1sqrt((1-x)/(1+x))dx

Evaluate the following integrals int sqrt((x)/(a^(3)-x^(3)))dx

Evaluate the following integral: int_(-a)^asqrt((a-x)/(a+x))dx

Evaluate the following integrals: int1/(sqrt(x))\ dx

Evaluate the following integrals: int sqrt(1+(x^(2))/(9))dx