Home
Class 12
MATHS
Evaluate: int1/(sinx+sqrt(3)cosx)\ dx...

Evaluate: `int1/(sinx+sqrt(3)cosx)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{\sin x + \sqrt{3} \cos x} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \frac{1}{\sin x + \sqrt{3} \cos x} \, dx \] 2. **Multiply and Divide by 2**: To simplify the expression, we multiply and divide by 2: \[ I = \int \frac{2}{2(\sin x + \sqrt{3} \cos x)} \, dx = \int \frac{2}{\sin x + \sqrt{3} \cos x} \cdot \frac{1}{2} \, dx \] 3. **Use the Angle Sum Identity**: We recognize that \( \sin x + \sqrt{3} \cos x \) can be expressed in terms of a single sine function using the angle sum identity: \[ \sin x + \sqrt{3} \cos x = 2 \left( \sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3} \right) = 2 \sin \left( x + \frac{\pi}{3} \right) \] Therefore, we can rewrite the integral as: \[ I = \int \frac{1}{2 \sin \left( x + \frac{\pi}{3} \right)} \, dx \] 4. **Integrate**: The integral of \( \frac{1}{\sin u} \) is \( \ln | \tan \frac{u}{2} | + C \). Thus, we have: \[ I = \frac{1}{2} \int \frac{1}{\sin \left( x + \frac{\pi}{3} \right)} \, dx = \frac{1}{2} \ln \left| \tan \left( \frac{x + \frac{\pi}{3}}{2} \right) \right| + C \] 5. **Final Result**: Simplifying gives us: \[ I = \frac{1}{2} \ln \left| \tan \left( \frac{x}{2} + \frac{\pi}{6} \right) \right| + C \] ### Final Answer: \[ \int \frac{1}{\sin x + \sqrt{3} \cos x} \, dx = \frac{1}{2} \ln \left| \tan \left( \frac{x}{2} + \frac{\pi}{6} \right) \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sqrt(3)sinx+cosx)dx

Evaluate: int1/(sqrt(3)sinx+cosx)dx

Evaluate: int1/(sinx(2+3cosx)\ dx

Evaluate: int1/(sinx(3+2cosx)\ dx

Evaluate: int(1+sinx)/(sqrt(x-cosx))dx

Evaluate: int(1+sinx)/(sqrt(x-cosx))dx

Evaluate: int1/((2sinx+3cosx)^2)\ dx

Evaluate: (i) int1/(sqrt(1-cos2x))\ dx (ii) int1/(sqrt(1+cosx))\ dx

Evaluate: (i) int1/(sqrt(1+cos2x))\ dx (ii) int1/(sqrt(1-cosx))\ dx

Evaluate: int1/(cosx(sinx+2cosx))\ dx