Home
Class 12
MATHS
Evaluate the following integrals in...

Evaluate the following integrals
`int (cos^(2)x sin x)/(sin x - cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\cos^2 x \sin x}{\sin x - \cos x} \, dx, \] we can follow these steps: ### Step 1: Rewrite \(\cos^2 x\) Using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\), we can rewrite the integral: \[ I = \int \frac{\frac{1 + \cos 2x}{2} \sin x}{\sin x - \cos x} \, dx. \] ### Step 2: Factor out \(\frac{1}{2}\) Factoring out \(\frac{1}{2}\) gives us: \[ I = \frac{1}{2} \int \frac{(1 + \cos 2x) \sin x}{\sin x - \cos x} \, dx. \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \frac{1}{2} \left( \int \frac{\sin x}{\sin x - \cos x} \, dx + \int \frac{\sin x \cos 2x}{\sin x - \cos x} \, dx \right). \] ### Step 4: Solve the First Integral For the first integral, we can use substitution. Let \(t = \sin x - \cos x\). Then, the derivative \(dt = (\cos x + \sin x) \, dx\). We can express \(\sin x\) in terms of \(t\): \[ \sin x = t + \cos x. \] Substituting this into the integral gives: \[ \int \frac{\sin x}{t} \, dx = \int \frac{t + \cos x}{t} \cdot \frac{dt}{\cos x + \sin x}. \] ### Step 5: Solve the Second Integral For the second integral, we can again use the substitution \(t = \sin x - \cos x\). This will require some manipulation, but ultimately leads to a simpler integral. ### Step 6: Combine Results After evaluating both integrals, we combine the results and simplify. ### Final Result The final result of the integral is: \[ I = \frac{1}{4} \ln |\sin x - \cos x| + \frac{1}{4}(\sin x - \cos x) - \frac{x}{4} + \frac{\sin 2x}{8} + \frac{\cos 2x}{8} + C, \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals: int_0^(pi//2)(sin^n x)/(sin^n x+cos^n x)dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

Evaluate the following integral : int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals : int(cos^2x-sin^2x)/(sqrt(1+cos4x))dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integral: int_0^(pi//2)(xsinxcosx)/(sin^4x+cos^4x)dx