Home
Class 12
MATHS
Evaluate the following integrals Ev...

Evaluate the following integrals
Evaluate `int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx, \] we can use a method involving the comparison of coefficients. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx. \] ### Step 2: Express the numerator in terms of the denominator We can express the numerator as a linear combination of the denominator and its derivative. We write: \[ 3 \sin x + 2 \cos x = A(3 \cos x + 2 \sin x) + B(2 \cos x - 3 \sin x), \] where \(A\) and \(B\) are constants we need to determine. ### Step 3: Differentiate the denominator The derivative of the denominator \(3 \cos x + 2 \sin x\) is: \[ \frac{d}{dx}(3 \cos x + 2 \sin x) = -3 \sin x + 2 \cos x. \] ### Step 4: Compare coefficients Now we compare coefficients from both sides. Expanding the right-hand side gives: \[ A(3 \cos x + 2 \sin x) + B(2 \cos x - 3 \sin x) = (3A + 2B) \cos x + (2A - 3B) \sin x. \] From this, we can set up the following equations: 1. \(3A + 2B = 2\) (coefficient of \(\cos x\)) 2. \(2A - 3B = 3\) (coefficient of \(\sin x\)) ### Step 5: Solve the system of equations We can solve these equations simultaneously. From the first equation: \[ 3A + 2B = 2 \quad \text{(1)} \] From the second equation: \[ 2A - 3B = 3 \quad \text{(2)} \] Now, we can multiply equation (1) by 3: \[ 9A + 6B = 6 \quad \text{(3)} \] And multiply equation (2) by 2: \[ 4A - 6B = 6 \quad \text{(4)} \] Now, adding equations (3) and (4): \[ (9A + 6B) + (4A - 6B) = 6 + 6, \] \[ 13A = 12 \implies A = \frac{12}{13}. \] Substituting \(A\) back into equation (1): \[ 3\left(\frac{12}{13}\right) + 2B = 2, \] \[ \frac{36}{13} + 2B = 2 \implies 2B = 2 - \frac{36}{13} = \frac{26 - 36}{13} = \frac{-10}{13} \implies B = \frac{-5}{13}. \] ### Step 6: Substitute back into the integral Now substitute \(A\) and \(B\) back into the integral: \[ I = \int \left(\frac{12}{13} \cdot \frac{3 \cos x + 2 \sin x}{3 \cos x + 2 \sin x} + \frac{-5}{13} \cdot \frac{2 \cos x - 3 \sin x}{3 \cos x + 2 \sin x}\right) \, dx. \] This simplifies to: \[ I = \frac{12}{13} \int dx - \frac{5}{13} \int \frac{2 \cos x - 3 \sin x}{3 \cos x + 2 \sin x} \, dx. \] ### Step 7: Solve the remaining integral Let \(t = 3 \cos x + 2 \sin x\). Then, \[ dt = (-3 \sin x + 2 \cos x) \, dx. \] Thus, we can rewrite the integral: \[ \int \frac{2 \cos x - 3 \sin x}{3 \cos x + 2 \sin x} \, dx = \int \frac{dt}{t}. \] ### Step 8: Final integration Now we can integrate: \[ I = \frac{12}{13} x - \frac{5}{13} \ln |t| + C, \] Substituting back \(t\): \[ I = \frac{12}{13} x - \frac{5}{13} \ln |3 \cos x + 2 \sin x| + C. \] ### Final Answer Thus, the final result is: \[ I = \frac{12}{13} x - \frac{5}{13} \ln |3 \cos x + 2 \sin x| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

evaluate int( sin x + cos x )^ 2 dx

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following Integrals. int (dx)/((2 sin x+ 3 cos x)^(2))

Evaluate the following Integrals. int (dx)/(cos x (sin x + 2 cosx))

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integration int (sin 4x)/(sin x)dx