Home
Class 12
MATHS
Evaluate the following integrals Ev...

Evaluate the following integrals
Evaluate `int (2x-4)sqrt(4+3x-x^(2))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (2x - 4) \sqrt{4 + 3x - x^2} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 4 + 3x - x^2 \). Now, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 3 - 2x \implies dt = (3 - 2x) \, dx \implies dx = \frac{dt}{3 - 2x} \] ### Step 2: Rewrite the Integral Now we rewrite the integral in terms of \( t \): \[ \int (2x - 4) \sqrt{t} \, dx = \int (2x - 4) \sqrt{t} \cdot \frac{dt}{3 - 2x} \] To express \( 2x - 4 \) in terms of \( t \), we can rearrange \( t = 4 + 3x - x^2 \): \[ 2x - 4 = 2x - 4 = - (3 - 2x) + 1 \] Thus, we can substitute: \[ \int (-(3 - 2x) + 1) \sqrt{t} \cdot \frac{dt}{3 - 2x} \] ### Step 3: Separate the Integral This gives us two separate integrals: \[ -\int \sqrt{t} \, dt + \int \frac{\sqrt{t}}{3 - 2x} \, dt \] ### Step 4: Evaluate the First Integral The first integral can be evaluated as follows: \[ -\int \sqrt{t} \, dt = -\frac{2}{3} t^{3/2} + C_1 \] ### Step 5: Evaluate the Second Integral For the second integral, we need to express \( \frac{1}{3 - 2x} \) in terms of \( t \). From our substitution, we have: \[ 3 - 2x = \sqrt{(4 + 3x - x^2)} \text{ (after some algebra)} \] Thus, we can rewrite: \[ \int \frac{\sqrt{t}}{3 - 2x} \, dt = \int \frac{\sqrt{t}}{\sqrt{t}} \, dt = \int dt = t + C_2 \] ### Step 6: Combine Results Combining both results, we have: \[ -\frac{2}{3} t^{3/2} + t + C \] ### Step 7: Substitute Back Now substitute back \( t = 4 + 3x - x^2 \): \[ -\frac{2}{3} (4 + 3x - x^2)^{3/2} + (4 + 3x - x^2) + C \] ### Final Result The final result is: \[ -\frac{2}{3} (4 + 3x - x^2)^{3/2} + (4 + 3x - x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(dx)/(sqrt(5-4x-2x^2))

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate: int(e^x)/(sqrt(4-e^(2x)))dx

Evaluate the following integrals int (2^(x))/(sqrt(4^(x)-25))dx

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Evaluate: int(3x+1)\ sqrt(4-3x-2x^2)\ dx

Evaluate: int(x^2)/(sqrt(4-x^2))\ dx

Evaluate the following integrals : int_1^4(3x^2+2x)dx

Evaluate the following integrals int (x-3)/sqrt(3-2x-x^(2))dx

Evaluate the following integrals : int(3x+4)^2dx