Home
Class 12
MATHS
Evaluate the following Integrals : in...

Evaluate the following Integrals :
`int (dx)/(1+x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{1+x^3} \), we will follow a systematic approach. ### Step 1: Factor the denominator The first step is to factor the denominator \( 1 + x^3 \). We can use the identity for the sum of cubes: \[ 1 + x^3 = (1 + x)(1 - x + x^2) \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{(1+x)(1-x+x^2)} \] ### Step 2: Use partial fraction decomposition Next, we will use partial fraction decomposition to express the integrand in a simpler form: \[ \frac{1}{(1+x)(1-x+x^2)} = \frac{A}{1+x} + \frac{Bx + C}{1-x+x^2} \] Multiplying through by the denominator \( (1+x)(1-x+x^2) \) and equating coefficients will help us find \( A \), \( B \), and \( C \). ### Step 3: Solve for coefficients Setting up the equation: \[ 1 = A(1-x+x^2) + (Bx + C)(1+x) \] Expanding this and collecting like terms gives: \[ 1 = A - Ax + Ax^2 + Bx + C + Cx \] Combining terms: \[ 1 = (A + C) + (B - A + C)x + Ax^2 \] From here, we can equate coefficients: 1. \( A + C = 1 \) 2. \( B - A + C = 0 \) 3. \( A = 0 \) From \( A = 0 \), we have \( C = 1 \) and \( B = -1 \). Thus, we can rewrite the integral as: \[ I = \int \left( \frac{1}{1+x} - \frac{x-1}{1-x+x^2} \right) dx \] ### Step 4: Integrate each term Now we can integrate each term separately: 1. For \( \int \frac{1}{1+x} \, dx \): \[ \int \frac{1}{1+x} \, dx = \log|1+x| \] 2. For \( \int \frac{x-1}{1-x+x^2} \, dx \), we can split it into two parts: \[ \int \frac{x}{1-x+x^2} \, dx - \int \frac{1}{1-x+x^2} \, dx \] ### Step 5: Solve \( \int \frac{x}{1-x+x^2} \, dx \) Using substitution \( u = 1 - x + x^2 \), we find: \[ du = (2x - 1)dx \quad \Rightarrow \quad dx = \frac{du}{2x - 1} \] This requires further manipulation, but ultimately leads to a logarithmic term. ### Step 6: Solve \( \int \frac{1}{1-x+x^2} \, dx \) This integral can be solved using the arctangent formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \] where \( a = \sqrt{3}/2 \). ### Final Result Combining all parts, we get: \[ I = \frac{1}{3} \log(1+x^3) - \frac{1}{2} \log(1-x+x^2) + \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{2x - 1}{\sqrt{3}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int (dx)/(x(x^(n)+1))

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following Integrals : int ((x+2)dx)/((x^(2)+3x+3)sqrt(x+1))

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integrals : int_0^2(x+3)dx

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integral : int(1)/(x^(4)+1)dx