Home
Class 12
MATHS
Evaluate the following Integrals : in...

Evaluate the following Integrals :
`int (dx)/(x(x^(n)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{x(x^n + 1)}, \] we can follow these steps: ### Step 1: Substitution Let \( t = x^{n+1} \). Then, we differentiate to find \( dx \): \[ dt = (n x^n) dx \quad \Rightarrow \quad dx = \frac{dt}{n x^n}. \] ### Step 2: Express \( x \) in terms of \( t \) From our substitution \( t = x^{n+1} \), we can express \( x \) as: \[ x = t^{\frac{1}{n+1}}. \] Thus, \( x^n = (t^{\frac{1}{n+1}})^n = t^{\frac{n}{n+1}} \). ### Step 3: Substitute into the integral Now, substituting \( x \) and \( dx \) into the integral: \[ I = \int \frac{1}{t^{\frac{1}{n+1}} \left(t + 1\right)} \cdot \frac{dt}{n t^{\frac{n}{n+1}}}. \] This simplifies to: \[ I = \frac{1}{n} \int \frac{dt}{t^{\frac{n+1}{n+1}}(t + 1)} = \frac{1}{n} \int \frac{dt}{t(t + 1)}. \] ### Step 4: Partial Fraction Decomposition Now, we can use partial fractions: \[ \frac{1}{t(t + 1)} = \frac{A}{t} + \frac{B}{t + 1}. \] Multiplying through by \( t(t + 1) \) gives: \[ 1 = A(t + 1) + Bt. \] Setting \( t = 0 \) gives \( A = 1 \). Setting \( t = -1 \) gives \( B = -1 \). Thus, we have: \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1}. \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{1}{n} \left( \int \frac{1}{t} dt - \int \frac{1}{t + 1} dt \right). \] This results in: \[ I = \frac{1}{n} \left( \ln |t| - \ln |t + 1| \right) + C. \] ### Step 6: Substitute back for \( t \) Substituting back \( t = x^{n+1} \): \[ I = \frac{1}{n} \left( \ln |x^{n+1}| - \ln |x^{n+1} + 1| \right) + C. \] Using properties of logarithms, we can combine this: \[ I = \frac{1}{n} \ln \left| \frac{x^{n+1}}{x^{n+1} + 1} \right| + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{x(x^n + 1)} = \frac{1}{n} \ln \left| \frac{x^{n+1}}{x^{n+1} + 1} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int (dx)/(1+x^(3))

Evaluate the following Integrals. int (log x)/(x)dx

Evaluate the following Integrals : int (dx)/((x+1)^(1//2)+(x+1)^(1//2))

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following integrals int (x dx)/(9-16x^(4))

Evaluate the following integral : int(1)/(x^(4)+1)dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following Integrals : int ((x+2)dx)/((x^(2)+3x+3)sqrt(x+1))

Evaluate the following Integrals. int (x+1)/(x^(2) + 2x +1)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx