Home
Class 12
MATHS
Evaluate the following Integrals : in...

Evaluate the following Integrals :
`int (dx)/(sin x(3+cos x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{\sin x (3 + \cos x)} \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sin x (3 + \cos x)} \] To simplify this, we can multiply and divide by \(\sin x\): \[ I = \int \frac{\sin x \, dx}{\sin^2 x (3 + \cos x)} \] ### Step 2: Use the Identity for \(\sin^2 x\) Recall the identity \(\sin^2 x = 1 - \cos^2 x\). Thus, we can rewrite the integral as: \[ I = \int \frac{\sin x \, dx}{(1 - \cos^2 x)(3 + \cos x)} \] ### Step 3: Substitution Let \( t = \cos x \). Then, the differential \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). Substituting these into the integral gives: \[ I = \int \frac{-dt}{(1 - t^2)(3 + t)} \] This can be rewritten as: \[ I = -\int \frac{dt}{(1 - t^2)(3 + t)} \] ### Step 4: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{(1 - t^2)(3 + t)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{3 + t} \] Multiplying through by the denominator \((1 - t^2)(3 + t)\) and equating coefficients will help us find \(A\), \(B\), and \(C\). ### Step 5: Solve for Coefficients Setting up the equation: \[ 1 = A(1 + t)(3 + t) + B(1 - t)(3 + t) + C(1 - t^2) \] By substituting convenient values for \(t\) (like \(t = 1\), \(t = -1\), and \(t = -3\)), we can solve for \(A\), \(B\), and \(C\). 1. **Let \( t = -1 \)**: \[ 1 = A(0) + B(0) + C(4) \implies C = \frac{1}{4} \] 2. **Let \( t = 1 \)**: \[ 1 = A(4) + B(0) + C(0) \implies A = \frac{1}{4} \] 3. **Let \( t = -3 \)**: \[ 1 = A(0) + B(-4) + C(0) \implies B = -\frac{1}{4} \] Thus, we have: \[ A = \frac{1}{4}, \quad B = -\frac{1}{4}, \quad C = \frac{1}{4} \] ### Step 6: Rewrite the Integral Substituting back into the integral: \[ I = -\int \left( \frac{1/4}{1 - t} - \frac{1/4}{1 + t} + \frac{1/4}{3 + t} \right) dt \] This simplifies to: \[ I = -\frac{1}{4} \left( \int \frac{dt}{1 - t} - \int \frac{dt}{1 + t} + \int \frac{dt}{3 + t} \right) \] ### Step 7: Integrate Each Term Now, we can integrate each term: \[ I = -\frac{1}{4} \left( -\ln |1 - t| + \ln |1 + t| + \frac{1}{3} \ln |3 + t| \right) + C \] ### Step 8: Substitute Back Substituting back \(t = \cos x\): \[ I = -\frac{1}{4} \left( -\ln |1 - \cos x| + \ln |1 + \cos x| + \frac{1}{3} \ln |3 + \cos x| \right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{4} \ln \left( \frac{1 + \cos x}{1 - \cos x} \right) + \frac{1}{12} \ln |3 + \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (dx)/((2 sin x+ 3 cos x)^(2))

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following Integrals. int 1/(1+sin (x))dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following Integrals. int (dx)/(cos x (sin x + 2 cosx))

Evaluate the following Integrals. int (dx)/(4sin^(2)x + 4 sin x cos x + 5 cos^(2) x)

Evaluate the following integral: int_0^(2pi)|sin x|dx

Evaluate the following integrals int_1^3(2x+3)dx