Home
Class 12
MATHS
int(secx)/(1+c o s e c x)dx...

`int(secx)/(1+c o s e c x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sec x}{1 + \csc x} \, dx\), we will follow a systematic approach. ### Step 1: Rewrite the integral in terms of sine and cosine. We know that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \csc x = \frac{1}{\sin x} \] Thus, we can rewrite the integral as: \[ \int \frac{\sec x}{1 + \csc x} \, dx = \int \frac{\frac{1}{\cos x}}{1 + \frac{1}{\sin x}} \, dx \] ### Step 2: Simplify the expression. To simplify, we can find a common denominator for the term in the denominator: \[ 1 + \frac{1}{\sin x} = \frac{\sin x + 1}{\sin x} \] So, the integral becomes: \[ \int \frac{1}{\cos x} \cdot \frac{\sin x}{\sin x + 1} \, dx = \int \frac{\sin x}{\cos x (\sin x + 1)} \, dx \] ### Step 3: Rewrite using trigonometric identities. We can express \(\frac{\sin x}{\cos x}\) as \(\tan x\): \[ \int \frac{\sin x}{\cos x (\sin x + 1)} \, dx = \int \frac{\tan x}{\sin x + 1} \, dx \] ### Step 4: Use substitution. Let \(t = \sin x\), then \(dt = \cos x \, dx\), or \(dx = \frac{dt}{\cos x}\). Since \(\cos^2 x = 1 - \sin^2 x = 1 - t^2\), we have: \[ dx = \frac{dt}{\sqrt{1 - t^2}} \] Thus, the integral becomes: \[ \int \frac{t}{(1 - t^2)(1 + t)} \cdot \frac{dt}{\sqrt{1 - t^2}} \] ### Step 5: Simplify the integral. Now we can express the integral as: \[ \int \frac{t}{(1 - t^2)(1 + t)} \cdot \frac{dt}{\sqrt{1 - t^2}} \] ### Step 6: Use partial fractions. We can decompose the fraction into partial fractions: \[ \frac{t}{(1 - t^2)(1 + t)} = \frac{A}{1 + t} + \frac{B}{1 - t} + \frac{C}{1 - t^2} \] By solving for \(A\), \(B\), and \(C\), we can integrate each term separately. ### Step 7: Integrate each term. After finding \(A\), \(B\), and \(C\), we can integrate: \[ \int \frac{A}{1 + t} \, dt + \int \frac{B}{1 - t} \, dt + \int \frac{C}{1 - t^2} \, dt \] ### Step 8: Substitute back. Finally, substitute back \(t = \sin x\) into the integrated result to express the answer in terms of \(x\). ### Final Answer: The final result will be: \[ \frac{1}{4} \log |1 + \sin x| - \frac{1}{2(1 + \sin x)} - \frac{1}{4} \log |1 - \sin x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(secx)/(sec2x)dx

Evaluate: int1/(secx+cos e c\ x)\ dx

Which of the following pair(s) of function have same graphs? f(x)=(secx)/(cosx)-(tanx)/(cotx),g(x)=(cosx)/(secx)+(sinx)/(c o s e c x)

Evaluate the following integral: int_0^pi(xtanx)/(secx\ cos e c\ x)dx

Evaluate: int(secx)/(log(secx+tanx)dx

Evaluate: (i) int(sin^2x)/(1+cosx)\ dx (ii) int(sec^2x+cos e c^2x)\ dx

Evaluate: (i) int(tanx)/(secx+tanx)\ dx (ii) int(cos e c\ x)/(cos e c\ x-cotx)\ dx

Evaluate: (i) int(secx\ cos e c\ x)/(log(tanx)\ dx (ii) int1/(x\ (3+logx)\ dx

Using properties of definite integrals, prove the following : int_o^pi(xtanx)/(secx\ cos e c\ x)\ dx=(pi^2)/4

Evaluate: int(cos e c^2x)/(1+cotx)dx