Home
Class 12
MATHS
Prove that : int (1)/(x[6(logx)^(2)+7log...

Prove that : `int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int \frac{1}{x(6(\log x)^2 + 7\log x + 2)} \, dx = \log \left| \frac{1 + \log x^2}{2 + \log x^3} \right| + C, \] we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, differentiating both sides gives us: \[ \frac{1}{x} \, dx = dt. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{dt}{6t^2 + 7t + 2}. \] ### Step 3: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{6t^2 + 7t + 2} = \frac{A}{2t + 1} + \frac{B}{3t + 2}. \] Multiplying through by the denominator \( 6t^2 + 7t + 2 \) gives: \[ 1 = A(3t + 2) + B(2t + 1). \] ### Step 4: Solve for A and B Expanding the right-hand side: \[ 1 = (3A + 2B)t + (2A + B). \] Now, we can set up a system of equations by equating coefficients: 1. \( 3A + 2B = 0 \) (coefficient of \( t \)) 2. \( 2A + B = 1 \) (constant term) From the first equation, we can express \( B \) in terms of \( A \): \[ B = -\frac{3}{2}A. \] Substituting this into the second equation: \[ 2A - \frac{3}{2}A = 1 \implies \frac{1}{2}A = 1 \implies A = 2. \] Substituting \( A = 2 \) back into the equation for \( B \): \[ B = -\frac{3}{2}(2) = -3. \] ### Step 5: Rewrite the Integral Now substituting \( A \) and \( B \) back into the partial fractions gives: \[ \int \left( \frac{2}{2t + 1} - \frac{3}{3t + 2} \right) dt. \] ### Step 6: Integrate Now we can integrate each term separately: \[ \int \frac{2}{2t + 1} \, dt - \int \frac{3}{3t + 2} \, dt. \] The integrals yield: \[ 2 \log |2t + 1| - 3 \log |3t + 2| + C. \] ### Step 7: Combine the Logs Using the properties of logarithms, we can combine these: \[ \log |(2t + 1)^2| - \log |(3t + 2)^3| = \log \left| \frac{(2t + 1)^2}{(3t + 2)^3} \right| + C. \] ### Step 8: Substitute Back Now, substituting back \( t = \log x \): \[ 2t + 1 = 2\log x + 1 = \log x^2 + 1, \] \[ 3t + 2 = 3\log x + 2 = \log x^3 + 2. \] Thus, we have: \[ \log \left| \frac{(1 + \log x^2)}{(2 + \log x^3)} \right| + C. \] ### Conclusion Therefore, we have proved that: \[ \int \frac{1}{x(6(\log x)^2 + 7\log x + 2)} \, dx = \log \left| \frac{1 + \log x^2}{2 + \log x^3} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evlauate : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

Evalute: int1/((x)(6(logx)^2 +7logx + 2)) dx

int log ( 1 + x^(2)) dx

Evaluate: int1/(x\ {6\ (logx)^2+7logx+2})\ dx

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

int(dx)/(x.logx.log(logx))=

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2