Home
Class 12
MATHS
Statement I int((1)/(1+x^(4)))dx=tan^(-1...

Statement I `int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C`
Statement II `int(1)/(1+x^(2))dx=tan^(-1)x +C`

A

Statement I is true, Statement II is also true , Statement II is the correct explanation of Statement I.

B

Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.

C

Statement I is true, Statement II is false.

D

Statement I is false, Statement II is true .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the two statements regarding integrals and determine their validity. ### Statement I: \[ \int \frac{1}{1+x^4} \, dx = \tan^{-1}(x^2) + C \] ### Statement II: \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) + C \] ### Step-by-Step Solution: #### Step 1: Analyze Statement I Let: \[ I = \int \frac{1}{1+x^4} \, dx \] To evaluate this integral, we can use a substitution or partial fraction decomposition. However, we will first check if the provided statement is correct by differentiating the right-hand side. #### Step 2: Differentiate the Right-Hand Side of Statement I Differentiate \(\tan^{-1}(x^2) + C\): \[ \frac{d}{dx} \left( \tan^{-1}(x^2) \right) = \frac{2x}{1 + (x^2)^2} = \frac{2x}{1 + x^4} \] Thus, we have: \[ \frac{d}{dx} \left( \tan^{-1}(x^2) + C \right) = \frac{2x}{1 + x^4} \] Since the left-hand side of Statement I is \(\frac{1}{1+x^4}\), we see that: \[ \frac{d}{dx} \left( \tan^{-1}(x^2) + C \right) \neq \frac{1}{1+x^4} \] This shows that Statement I is **false**. #### Step 3: Analyze Statement II Let: \[ J = \int \frac{1}{1+x^2} \, dx \] #### Step 4: Differentiate the Right-Hand Side of Statement II Differentiate \(\tan^{-1}(x) + C\): \[ \frac{d}{dx} \left( \tan^{-1}(x) \right) = \frac{1}{1+x^2} \] Thus, we have: \[ \frac{d}{dx} \left( \tan^{-1}(x) + C \right) = \frac{1}{1+x^2} \] This confirms that Statement II is **true**. ### Conclusion: - **Statement I** is **false**. - **Statement II** is **true**. ### Final Answer: - Statement I is false. - Statement II is true.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

Evaluate: int ((1)/(1+tan x))dx

Solve: int_(-1)^(1)x tan^(-1)x dx

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

int 1/((1+x^2)tan^(-1)x)dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int(1)/(sqrt(1-tan^(2)x))dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx