Home
Class 12
MATHS
Statement I int 2^(tan^(-1)x)d(cot^(-1)x...

Statement I `int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C`
Statement II `(d)/(dx) (a^(x)+C)=a^(x) ln a`

A

Statement I is true, Statement II is also true , Statement II is the correct explanation of Statement I.

B

Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.

C

Statement I is true, Statement II is false.

D

Statement I is false, Statement II is true .

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integral step by step. ### Given Problem: We need to verify the statement: \[ \int 2^{\tan^{-1} x} \, d(\cot^{-1} x) = \frac{2^{\tan^{-1} x}}{\ln 2} + C \] ### Step 1: Change of Variable Let \( T = \cot^{-1} x \). Then, we have: \[ \frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1+x^2} \implies d(\cot^{-1} x) = -\frac{1}{1+x^2} \, dx \] Thus, the integral becomes: \[ \int 2^{\tan^{-1} x} \, d(\cot^{-1} x) = -\int 2^{\tan^{-1} x} \frac{1}{1+x^2} \, dx \] ### Step 2: Express \(\tan^{-1} x\) in terms of \(T\) Using the identity: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] We can express \(\tan^{-1} x\) as: \[ \tan^{-1} x = \frac{\pi}{2} - T \] ### Step 3: Substitute in the Integral Substituting this into the integral, we have: \[ -\int 2^{\frac{\pi}{2} - T} \frac{1}{1+x^2} \, dx \] This can be rewritten as: \[ -\int \frac{2^{\frac{\pi}{2}}}{2^T} \frac{1}{1+x^2} \, dx \] ### Step 4: Solve the Integral Now, we can factor out the constant \(2^{\frac{\pi}{2}}\): \[ -2^{\frac{\pi}{2}} \int \frac{1}{2^T(1+x^2)} \, dx \] The integral \(\int \frac{1}{1+x^2} \, dx\) gives \(\tan^{-1} x\). ### Step 5: Final Expression Thus, we have: \[ -2^{\frac{\pi}{2}} \left( \tan^{-1} x \cdot \frac{1}{2^T} \right) + C \] Substituting back \(T = \cot^{-1} x\): \[ = -\frac{2^{\frac{\pi}{2}} \tan^{-1} x}{2^{\cot^{-1} x}} + C \] This does not match the original statement. ### Conclusion The statement: \[ \int 2^{\tan^{-1} x} \, d(\cot^{-1} x) = \frac{2^{\tan^{-1} x}}{\ln 2} + C \] is incorrect. ### Verification of Statement II The second statement is: \[ \frac{d}{dx} (a^x + C) = a^x \ln a \] This is true as the derivative of a constant \(C\) is zero. ### Final Result - Statement I is **False**. - Statement II is **True**.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

(d)/(dx)(e^((1)/(2)log(1+tan^(2)x))) is equal to

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x . Statement 2: d/(dx)(xy)=0,y is a function of x implies(dy)/(dx)=-y/x .

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate tan^-1((4sqrt(x))/(1-4x))

Statement-1: int(sinx)^x(xcotx+logsinx)dx=x(sinx)^x Statement-2: d/dx(f(x))^(g(x))=(f(x))^(g(x))d/dx[g(x)logf(x)] (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Differentiate tan^(-1) ( (3a^2x-x^3)/(a^3-3a x^2) )

Differentiate sin^(-1)((2x)/(1+2x)) wrt to tan^(-1)x , -1