Home
Class 12
MATHS
Let F(x) be the primitive of (3x+2)/sqrt...

Let F(x) be the primitive of `(3x+2)/sqrt(x-9)`w.r.t.x. If `F(10)=60` then the value of `F(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the integral of the function \( F(x) = \int \frac{3x + 2}{\sqrt{x - 9}} \, dx \) and then use the given condition \( F(10) = 60 \) to find the constant of integration. Finally, we will evaluate \( F(13) \). ### Step 1: Rewrite the Integral We start with the integral: \[ F(x) = \int \frac{3x + 2}{\sqrt{x - 9}} \, dx \] ### Step 2: Substitution Let \( t = \sqrt{x - 9} \). Then, we have: \[ x - 9 = t^2 \quad \Rightarrow \quad x = t^2 + 9 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 3: Substitute in the Integral Now, substitute \( x \) and \( dx \) into the integral: \[ F(x) = \int \frac{3(t^2 + 9) + 2}{t} \cdot 2t \, dt \] This simplifies to: \[ F(x) = \int (3(t^2 + 9) + 2) \cdot 2 \, dt = \int (6t^2 + 60 + 4) \, dt = \int (6t^2 + 64) \, dt \] ### Step 4: Integrate Now, we can integrate: \[ F(x) = 6 \cdot \frac{t^3}{3} + 64t + C = 2t^3 + 64t + C \] ### Step 5: Substitute Back for \( t \) Substituting back \( t = \sqrt{x - 9} \): \[ F(x) = 2(\sqrt{x - 9})^3 + 64\sqrt{x - 9} + C = 2(x - 9)^{3/2} + 64(x - 9)^{1/2} + C \] ### Step 6: Use the Condition \( F(10) = 60 \) Now we use the condition \( F(10) = 60 \): \[ F(10) = 2(10 - 9)^{3/2} + 64(10 - 9)^{1/2} + C = 2(1) + 64(1) + C = 2 + 64 + C = 66 + C \] Setting this equal to 60 gives: \[ 66 + C = 60 \quad \Rightarrow \quad C = 60 - 66 = -6 \] ### Step 7: Write the Final Expression for \( F(x) \) Thus, we have: \[ F(x) = 2(x - 9)^{3/2} + 64(x - 9)^{1/2} - 6 \] ### Step 8: Find \( F(13) \) Now we can find \( F(13) \): \[ F(13) = 2(13 - 9)^{3/2} + 64(13 - 9)^{1/2} - 6 \] Calculating: \[ F(13) = 2(4)^{3/2} + 64(4)^{1/2} - 6 = 2 \cdot 8 + 64 \cdot 2 - 6 = 16 + 128 - 6 = 138 \] ### Final Answer Thus, the value of \( F(13) \) is: \[ \boxed{138} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=logx , then the derivative of f (logx)w.r.t.x is

x^2+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

Let f(x) = 1/x ln(x/e^x) then its primitive w.r.t x is

The derivative of f(x)= 3x^2 +2x + 4 w.r.t. x is

Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^n(x) denotes the n^(th) derivativeof f(x) w.r.t x then then value of n is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

Let f:(0,oo)rarr(0,oo) be a derivable function and F(x) is the primitive of f(x) such that 2(F(x)-f(x))=f^(2)(x) for any real positive x

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)