Home
Class 12
MATHS
If int(1)/((x^(2)-1))ln((x-1)/(x+1))dx=6...

If `int(1)/((x^(2)-1))ln((x-1)/(x+1))dx=6A[ln ((x-1)/(x+1))]^(2)+C`, then find 24 A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{x^2 - 1} \ln\left(\frac{x-1}{x+1}\right) \, dx = 6A \left[\ln\left(\frac{x-1}{x+1}\right)\right]^2 + C, \] we will follow these steps: ### Step 1: Substitution Let \[ t = \ln\left(\frac{x-1}{x+1}\right). \] Then, we need to find \( dt \). ### Step 2: Differentiate \( t \) Using the chain rule, we differentiate \( t \): \[ \frac{d}{dx}\left(\ln\left(\frac{x-1}{x+1}\right)\right) = \frac{1}{\frac{x-1}{x+1}} \cdot \frac{(x+1)(1) - (x-1)(1)}{(x+1)^2} = \frac{2}{(x-1)(x+1)} = \frac{2}{x^2 - 1}. \] Thus, we have: \[ dt = \frac{2}{x^2 - 1} \, dx \implies dx = \frac{(x^2 - 1)}{2} \, dt. \] ### Step 3: Substitute in the Integral Substituting \( t \) and \( dx \) into the integral: \[ \int \frac{1}{x^2 - 1} \ln\left(\frac{x-1}{x+1}\right) \, dx = \int \frac{1}{x^2 - 1} \cdot t \cdot \frac{(x^2 - 1)}{2} \, dt. \] This simplifies to: \[ \int \frac{t}{2} \, dt = \frac{1}{2} \int t \, dt. \] ### Step 4: Integrate Now we integrate: \[ \frac{1}{2} \int t \, dt = \frac{1}{2} \cdot \frac{t^2}{2} + C = \frac{t^2}{4} + C. \] ### Step 5: Substitute Back Substituting back \( t = \ln\left(\frac{x-1}{x+1}\right) \): \[ \frac{1}{4} \left[\ln\left(\frac{x-1}{x+1}\right)\right]^2 + C. \] ### Step 6: Compare with Given Expression We have: \[ \frac{1}{4} \left[\ln\left(\frac{x-1}{x+1}\right)\right]^2 + C = 6A \left[\ln\left(\frac{x-1}{x+1}\right)\right]^2 + C. \] This implies: \[ 6A = \frac{1}{4} \implies A = \frac{1}{24}. \] ### Step 7: Find \( 24A \) Now, we calculate: \[ 24A = 24 \cdot \frac{1}{24} = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

int x ^(x ^(2)+1) (2ln x+1)dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

int(1)/(x(3+log x))dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx