Home
Class 12
MATHS
If int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2...

If `int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx=mu e^(x)((1+x)/(1-x))^(lambda)+C`, then `2(lambda+mu)` is equal to ..... .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^x (2 - x^2)}{(1 - x) \sqrt{1 - x^2}} \, dx, \] we will simplify the integrand and find the constants \(\mu\) and \(\lambda\) as described in the problem. ### Step 1: Simplify the Integrand We can rewrite \(2 - x^2\) as \(1 - x^2 + 1\). Thus, we have: \[ I = \int \frac{e^x (1 - x^2 + 1)}{(1 - x) \sqrt{1 - x^2}} \, dx = \int \frac{e^x (1 - x^2)}{(1 - x) \sqrt{1 - x^2}} \, dx + \int \frac{e^x}{(1 - x) \sqrt{1 - x^2}} \, dx. \] ### Step 2: Factor the Integrand We can factor \(1 - x^2\) as \((1 - x)(1 + x)\): \[ I = \int \frac{e^x (1 - x)(1 + x)}{(1 - x) \sqrt{1 - x^2}} \, dx + \int \frac{e^x}{(1 - x) \sqrt{1 - x^2}} \, dx. \] This simplifies to: \[ I = \int \frac{e^x (1 + x)}{\sqrt{1 - x^2}} \, dx + \int \frac{e^x}{(1 - x) \sqrt{1 - x^2}} \, dx. \] ### Step 3: Use Substitution Let \(t = \frac{1 + x}{\sqrt{1 - x^2}}\). Then, we differentiate \(t\) with respect to \(x\): \[ dt = \left( \frac{(1 - x^2) \cdot 1 - (1 + x)(-x)}{(1 - x^2)^{3/2}} \right) dx. \] This leads to: \[ dt = \frac{(1 - x^2 + x + x^2)}{(1 - x^2)^{3/2}} \, dx = \frac{1 + x}{(1 - x^2)^{3/2}} \, dx. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral \(I\) in terms of \(t\): \[ I = \int e^x t \, dt. \] ### Step 5: Integrate The integral can be computed as: \[ I = e^x t + C = e^x \frac{1 + x}{1 - x} + C. \] ### Step 6: Compare with Given Form We compare this with the given form: \[ I = \mu e^x \left( \frac{1 + x}{1 - x} \right)^\lambda + C. \] From comparison, we can see that \(\mu = 1\) and \(\lambda = \frac{1}{2}\). ### Step 7: Calculate \(2(\lambda + \mu)\) Now we calculate: \[ 2(\lambda + \mu) = 2\left(\frac{1}{2} + 1\right) = 2 \cdot \frac{3}{2} = 3. \] Thus, the final answer is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int(x e^(2x))/((1+2x)^2)dx

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

int(1)/((x-1)sqrt(x^(2)-1))dx equals

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx