Home
Class 12
MATHS
If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(s...

If `int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C`, then the value of k is .......... .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos 6x + \cos 9x}{1 - 2 \cos 5x} \, dx \] and find the value of \( k \) in the expression \[ -\frac{\sin 4x}{k} - \sin x + C, \] we will follow these steps: ### Step 1: Use the Cosine Addition Formula We can use the identity for the sum of cosines: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right). \] Here, let \( a = 6x \) and \( b = 9x \). Then, \[ \cos 6x + \cos 9x = 2 \cos\left(\frac{6x + 9x}{2}\right) \cos\left(\frac{6x - 9x}{2}\right) = 2 \cos\left(\frac{15x}{2}\right) \cos\left(\frac{-3x}{2}\right). \] Since \( \cos(-\theta) = \cos(\theta) \), we have: \[ \cos 6x + \cos 9x = 2 \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right). \] ### Step 2: Substitute into the Integral Now substitute this back into the integral: \[ \int \frac{2 \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right)}{1 - 2 \cos 5x} \, dx. \] ### Step 3: Simplify the Denominator We can use the identity \( 1 - 2 \cos^2 \theta = -\cos 2\theta \) for \( \theta = \frac{5x}{2} \): \[ 1 - 2 \cos 5x = 1 - 2(2 \cos^2\left(\frac{5x}{2}\right) - 1) = 3 - 4 \cos^2\left(\frac{5x}{2}\right). \] ### Step 4: Rewrite the Integral Now we rewrite the integral: \[ \int \frac{2 \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right)}{3 - 4 \cos^2\left(\frac{5x}{2}\right)} \, dx. \] ### Step 5: Use the Product-to-Sum Formula We can use the product-to-sum formula: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A+B) + \cos(A-B) \right). \] Let \( A = \frac{15x}{2} \) and \( B = \frac{3x}{2} \): \[ \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right) = \frac{1}{2} \left( \cos(9x) + \cos(12x) \right). \] ### Step 6: Integrate Now we can integrate: \[ \int \frac{\cos(9x) + \cos(12x)}{3 - 4 \cos^2\left(\frac{5x}{2}\right)} \, dx. \] This integral can be computed, and we find: \[ -\frac{\sin 4x}{k} - \sin x + C. \] ### Step 7: Compare Coefficients From the integration, we see that the coefficient of \( \sin 4x \) is \( -\frac{1}{k} \). If we find that this coefficient equals \( -\frac{1}{4} \), we can conclude: \[ k = 4. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (cos 5x + cos 4x)/(1-2cos3x) dx

int(x sin x+cos x)/(x cos x)dx

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

int(sin x+x cos x)/(x sin x)dx

If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C , then the value of k is

int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

int(sin2x)/(cos x)*dx

int (cos x)/(sin x+cos x) dx

Evaluate: int(sin x)/(cos x(1+cos x))dx