Home
Class 12
MATHS
int sin^(5//2)x cos^(3)x dx = 2 sin^(A//...

`int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D`, then the value of `(A+B)-C` is equal to ........ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^{5/2} x \cos^3 x \, dx \) and express it in the form \( 2 \sin^{A/2} x \left( \frac{1}{B} - \frac{1}{C} \sin^2 x \right) + D \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sin^{5/2} x \cos^3 x \, dx \] Using the identity \( \cos^2 x = 1 - \sin^2 x \), we can express \( \cos^3 x \) as: \[ \cos^3 x = \cos^2 x \cdot \cos x = (1 - \sin^2 x) \cos x \] Thus, we can rewrite the integral as: \[ I = \int \sin^{5/2} x (1 - \sin^2 x) \cos x \, dx \] ### Step 2: Substitute \( \sin x = t \) Let \( \sin x = t \). Then, \( \cos x \, dx = dt \). The limits of integration do not change since we are dealing with indefinite integrals. The integral becomes: \[ I = \int t^{5/2} (1 - t^2) \, dt \] ### Step 3: Expand the integral Now, we can expand the integral: \[ I = \int (t^{5/2} - t^{7/2}) \, dt \] ### Step 4: Integrate term by term Using the power rule for integration, we have: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C \] Applying this to our integral: \[ I = \left[ \frac{t^{7/2}}{7/2} - \frac{t^{9/2}}{9/2} \right] + C \] This simplifies to: \[ I = \frac{2}{7} t^{7/2} - \frac{2}{9} t^{9/2} + C \] ### Step 5: Substitute back \( t = \sin x \) Now we substitute back \( t = \sin x \): \[ I = \frac{2}{7} \sin^{7/2} x - \frac{2}{9} \sin^{9/2} x + C \] ### Step 6: Factor out common terms Factoring out \( 2 \sin^{7/2} x \): \[ I = 2 \sin^{7/2} x \left( \frac{1}{7} - \frac{2}{9} \sin^2 x \right) + C \] ### Step 7: Identify constants \( A, B, C \) From the expression \( 2 \sin^{A/2} x \left( \frac{1}{B} - \frac{1}{C} \sin^2 x \right) + D \), we can identify: - \( A = 7 \) - \( B = 7 \) - \( C = 9 \) ### Step 8: Calculate \( (A + B) - C \) Now we compute: \[ (A + B) - C = (7 + 7) - 9 = 14 - 9 = 5 \] Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sin^(2//3) x cos^(3) x dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

int sin2x*e^(cos^(2)x)dx

int(sin2x)/(a^(2)-cos^(2)x)dx

int(sin 2x)/(5-cos^(2) x)dx

int (2-3 sin x)/(cos^(2) x) dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int x*sin2x*cos2x*dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx