Home
Class 12
MATHS
If int (x^(2020)+x^(804)+x^(402))(2x^(16...

If `int (x^(2020)+x^(804)+x^(402))(2x^(1608)+5x^(402)+10)^(1//402)dx=(1)/(10a)(2x^(2010)+5x^(804)+10^(402))^(a//402)`. Then `(a-400)` is equal to .......

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (x^{2020} + x^{804} + x^{402})(2x^{1608} + 5x^{402} + 10)^{\frac{1}{402}} \, dx \] ### Step 2: Factor Out Common Terms First, we can factor out \(x\) from the first part of the integral: \[ = \int x (x^{2019} + x^{803} + x^{401})(2x^{1608} + 5x^{402} + 10)^{\frac{1}{402}} \, dx \] ### Step 3: Substitute for Simplification Let: \[ t = 2x^{2010} + 5x^{804} + 10x^{402} \] Now differentiate \(t\): \[ dt = (2 \cdot 2010 x^{2009} + 5 \cdot 804 x^{803} + 10 \cdot 402 x^{401}) \, dx \] This simplifies to: \[ dt = (4020 x^{2009} + 4020 x^{803} + 4020 x^{401}) \, dx \] ### Step 4: Express \(dx\) in Terms of \(dt\) From the above, we can express \(dx\): \[ dx = \frac{dt}{4020 (x^{2009} + x^{803} + x^{401})} \] ### Step 5: Substitute Back into the Integral Substituting \(t\) and \(dx\) into the integral gives: \[ \int x \left( \frac{dt}{4020 (x^{2009} + x^{803} + x^{401})} \right) t^{\frac{1}{402}} \] ### Step 6: Simplify the Integral This can be simplified to: \[ \frac{1}{4020} \int t^{\frac{1}{402}} \, dt \] ### Step 7: Integrate Using the power rule for integration: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C \] we have: \[ \int t^{\frac{1}{402}} \, dt = \frac{t^{\frac{1}{402} + 1}}{\frac{1}{402} + 1} + C = \frac{t^{\frac{403}{402}}}{\frac{403}{402}} + C = \frac{402}{403} t^{\frac{403}{402}} + C \] ### Step 8: Substitute Back for \(t\) Substituting back for \(t\): \[ = \frac{1}{4020} \cdot \frac{402}{403} \left(2x^{2010} + 5x^{804} + 10x^{402}\right)^{\frac{403}{402}} + C \] ### Step 9: Compare with Given Expression We compare this with the given expression: \[ \frac{1}{10a} \left(2x^{2010} + 5x^{804} + 10x^{402}\right)^{\frac{a}{402}} \] From the comparison: \[ \frac{1}{4020} \cdot \frac{402}{403} = \frac{1}{10a} \] This leads to: \[ \frac{1}{4030} = \frac{1}{10a} \] ### Step 10: Solve for \(a\) Cross-multiplying gives: \[ 10a = 4030 \implies a = 403 \] ### Step 11: Find \(a - 400\) Finally, we calculate: \[ a - 400 = 403 - 400 = 3 \] ### Final Answer Thus, the value of \(a - 400\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(2x^(2)+5x+3)dx

1. int(5x^(2)-x+2)/(x^(3)+x)dx

int(x+2)(x-1)^(5)dx

int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

lim_(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

int1/(3x^2+13x-10)dx

int1/(3x^2+13x-10)dx