Home
Class 12
MATHS
Evaluate : intsqrt(x+sqrt(x^(2)+2))dx...

Evaluate : `intsqrt(x+sqrt(x^(2)+2))`dx

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{x + \sqrt{x^2 + 2}} \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral We start with the expression \( \sqrt{x + \sqrt{x^2 + 2}} \). ### Step 2: Use a substitution Let \( u = \sqrt{x + \sqrt{x^2 + 2}} \). Then, we need to express \( x \) in terms of \( u \) and find \( dx \). ### Step 3: Square both sides Squaring both sides gives: \[ u^2 = x + \sqrt{x^2 + 2} \] Rearranging this, we have: \[ \sqrt{x^2 + 2} = u^2 - x \] Now, squaring again: \[ x^2 + 2 = (u^2 - x)^2 \] Expanding the right side: \[ x^2 + 2 = u^4 - 2u^2x + x^2 \] This simplifies to: \[ 2 = u^4 - 2u^2x \] Rearranging gives: \[ 2u^2x = u^4 - 2 \quad \Rightarrow \quad x = \frac{u^4 - 2}{2u^2} \] ### Step 4: Differentiate to find \( dx \) Now, we differentiate \( x \) with respect to \( u \): \[ dx = \left( \frac{d}{du} \left( \frac{u^4 - 2}{2u^2} \right) \right) du \] Using the quotient rule: \[ dx = \left( \frac{(4u^3)(2u^2) - (u^4 - 2)(4u)}{(2u^2)^2} \right) du \] This simplifies to: \[ dx = \frac{8u^5 - 4u^5 + 8u}{4u^4} du = \frac{4u^5 + 8u}{4u^4} du = \left( u + \frac{2}{u^3} \right) du \] ### Step 5: Substitute back into the integral Now we substitute \( x \) and \( dx \) back into the integral: \[ I = \int u \left( u + \frac{2}{u^3} \right) du \] This simplifies to: \[ I = \int \left( u^2 + \frac{2}{u^2} \right) du \] ### Step 6: Integrate term by term Now we can integrate term by term: \[ I = \int u^2 \, du + 2 \int u^{-2} \, du \] Calculating these integrals gives: \[ I = \frac{u^3}{3} - \frac{2}{u} + C \] ### Step 7: Substitute back \( u \) Finally, we substitute back \( u = \sqrt{x + \sqrt{x^2 + 2}} \): \[ I = \frac{(x + \sqrt{x^2 + 2})^{3/2}}{3} - \frac{2}{\sqrt{x + \sqrt{x^2 + 2}}} + C \] ### Final Result: Thus, the evaluated integral is: \[ I = \frac{(x + \sqrt{x^2 + 2})^{3/2}}{3} - \frac{2}{\sqrt{x + \sqrt{x^2 + 2}}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intsqrt(4-x-x^(2))dx .

Evaluate: intsqrt(3-x^2)\ dx

Evaluate: intsqrt(9+x^2)\ dx

Evaluate: intsqrt(2-x-x^(2)) dx

Evaluate : intsqrt(x^(2)+2x+1)dx .

Evaluate: intsqrt(16\ x^2+25)\ dx

Evaluate: intsqrt(9-x^2)dx

intsqrt(x^(2)+a^(2))dx

Evaluate: intsqrt(e^x-1)dx

Evaluate: intsqrt(2a x-x^2)dx