Home
Class 12
MATHS
Evaluate int(sqrt(1+root(3)(x)))/(root(3...

Evaluate `int(sqrt(1+root(3)(x)))/(root(3)(x^(2)))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sqrt{1+\sqrt[3]{x}}}{\sqrt[3]{x^2}} \, dx, \] we will use substitution. Let's go through the solution step by step. ### Step 1: Substitution Let \[ t = 1 + \sqrt[3]{x}. \] Then, we differentiate both sides with respect to \(x\): \[ \frac{dt}{dx} = \frac{1}{3} x^{-\frac{2}{3}}. \] This implies: \[ dx = 3 x^{\frac{2}{3}} dt. \] ### Step 2: Express \(x\) in terms of \(t\) From our substitution, we have: \[ \sqrt[3]{x} = t - 1 \quad \Rightarrow \quad x = (t - 1)^3. \] ### Step 3: Substitute \(x\) and \(dx\) into the integral Now, we need to express the integral in terms of \(t\): \[ \sqrt[3]{x^2} = \sqrt[3]{((t - 1)^3)^2} = (t - 1)^2. \] Thus, the integral becomes: \[ \int \frac{\sqrt{t}}{(t - 1)^2} \cdot 3(t - 1)^2 dt. \] ### Step 4: Simplify the integral The \((t - 1)^2\) in the numerator and denominator cancels out: \[ 3 \int \sqrt{t} \, dt. \] ### Step 5: Evaluate the integral Now, we can evaluate the integral: \[ 3 \int t^{\frac{1}{2}} \, dt = 3 \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} + C = 2t^{\frac{3}{2}} + C. \] ### Step 6: Substitute back for \(t\) Recalling our substitution \(t = 1 + \sqrt[3]{x}\), we substitute back: \[ 2(1 + \sqrt[3]{x})^{\frac{3}{2}} + C. \] ### Final Answer Thus, the final answer is: \[ 2(1 + \sqrt[3]{x})^{\frac{3}{2}} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int root(3)(x)root(3)(1+root(3)(x^(4)))dx

int(1)/(root(3)(x^2))dx

int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

int(1+sqrt(x))/(1+root(3)(x))dx

Evaluate: int_1^(sqrt(3))(dx)/(1+x^2)

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int1/((x-3)sqrt(x+1dx))

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int(x+1)sqrt(2x^2+3)dx