Home
Class 12
MATHS
Evaluate int((2 sin theta + sin 2 theta)...

Evaluate `int((2 sin theta + sin 2 theta)d theta)/((cos theta-1)sqrt(cos theta + cos^(2) theta + cos^(3) theta))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(2 \sin \theta + \sin 2\theta) d\theta}{(cos \theta - 1) \sqrt{cos \theta + cos^2 \theta + cos^3 \theta}}, \] we will follow these steps: ### Step 1: Substitute \(\sin 2\theta\) We know that \(\sin 2\theta = 2 \sin \theta \cos \theta\). Thus, we can rewrite the integral as: \[ I = \int \frac{(2 \sin \theta + 2 \sin \theta \cos \theta) d\theta}{(cos \theta - 1) \sqrt{cos \theta + cos^2 \theta + cos^3 \theta}}. \] ### Step 2: Factor out \(2 \sin \theta\) Factoring out \(2 \sin \theta\) from the numerator gives us: \[ I = 2 \int \frac{\sin \theta (1 + \cos \theta) d\theta}{(cos \theta - 1) \sqrt{cos \theta + cos^2 \theta + cos^3 \theta}}. \] ### Step 3: Use the substitution \(cos \theta = x^2\) Let \(cos \theta = x^2\). Then, we differentiate: \[ -\sin \theta d\theta = 2x dx \implies d\theta = -\frac{2x dx}{\sin \theta}. \] Substituting this into the integral, we also need to express \(\sin \theta\) in terms of \(x\): \[ \sin^2 \theta = 1 - cos^2 \theta = 1 - x^4 \implies \sin \theta = \sqrt{1 - x^4}. \] ### Step 4: Substitute into the integral Substituting \(cos \theta\) and \(d\theta\) into the integral gives: \[ I = -4 \int \frac{x(1 + x^2) dx}{(x^2 - 1) \sqrt{x^2 + x^4 + x^6}}. \] ### Step 5: Simplify the square root We can factor out \(x^2\) from the square root: \[ \sqrt{x^2 + x^4 + x^6} = x \sqrt{1 + x^2 + x^4}. \] Thus, the integral simplifies to: \[ I = -4 \int \frac{x(1 + x^2) dx}{(x^2 - 1) x \sqrt{1 + x^2 + x^4}}. \] ### Step 6: Cancel \(x\) terms The \(x\) in the numerator and denominator cancels out, yielding: \[ I = -4 \int \frac{(1 + x^2) dx}{(x^2 - 1) \sqrt{1 + x^2 + x^4}}. \] ### Step 7: Further simplification We can express \(1 + x^2 + x^4\) as \((x^2 + 1)^2 - 1\). Thus, we can rewrite the integral as: \[ I = -4 \int \frac{(1 + x^2) dx}{(x^2 - 1) \sqrt{(x^2 + 1)^2 - 1}}. \] ### Step 8: Substitution for integration Let \(t = \frac{x - 1}{x + 1}\), then we can express \(dx\) in terms of \(dt\) and integrate accordingly. ### Step 9: Final integration Using the formula for integration of the form \(\int \frac{dx}{\sqrt{x^2 - a^2}}\), we can evaluate the integral and back-substitute to find the final answer in terms of \(\theta\). ### Final Answer After performing all the substitutions and simplifications, we arrive at the final answer: \[ I = -2\sqrt{3} \log\left(\frac{\sqrt{cos \theta + 1}}{cos \theta + 1}\right) + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

cos theta+sqrt(3)sin theta=2

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =