Home
Class 12
MATHS
Connect int x^(m-1)(a+bx^(n))^(p)dx with...

Connect `int x^(m-1)(a+bx^(n))^(p)dx` with `int x^(m-n-1)(a+bx^(n))^(p)dx` and evaluate `int(x^(8)dx)/((1-x^(3))^(1//3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^8}{(1-x^3)^{1/3}} \, dx \), we will first rewrite it in a form that allows us to connect it with the given integral \( \int x^{m-1} (a + b x^n)^p \, dx \). ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{x^8}{(1-x^3)^{1/3}} \, dx \] This can be rewritten as: \[ \int x^8 (1-x^3)^{-1/3} \, dx \] ### Step 2: Identify Values of \( m \) and \( n \) In the expression \( x^{m-1} (1 - x^3)^{p} \), we can identify: - \( m - 1 = 8 \) which gives \( m = 9 \) - The term \( (1 - x^3)^{-1/3} \) indicates that \( n = 3 \) and \( p = -\frac{1}{3} \). ### Step 3: Connect the Integrals Now, we can connect this integral with the form: \[ \int x^{m-n-1} (a + b x^n)^p \, dx \] Here, we have: - \( m - n - 1 = 9 - 3 - 1 = 5 \) - Thus, we can express our integral as: \[ \int x^5 (1 - x^3)^{-1/3} \, dx \] ### Step 4: Substitution Next, we will use the substitution \( t = 1 - x^3 \). Then, we have: \[ dt = -3x^2 \, dx \quad \Rightarrow \quad dx = -\frac{dt}{3x^2} \] From \( t = 1 - x^3 \), we can express \( x^3 = 1 - t \) and thus \( x = (1 - t)^{1/3} \). Therefore, \( x^2 = (1 - t)^{2/3} \). ### Step 5: Substitute in the Integral Substituting these into the integral gives: \[ \int x^5 (1 - x^3)^{-1/3} \, dx = \int (1 - t)^{5/3} t^{-1/3} \left(-\frac{dt}{3(1-t)^{2/3}}\right) \] This simplifies to: \[ -\frac{1}{3} \int (1 - t)^{5/3} t^{-1/3} (1 - t)^{-2/3} \, dt = -\frac{1}{3} \int (1 - t)^{1} t^{-1/3} \, dt \] ### Step 6: Evaluate the Integral Now we can evaluate: \[ -\frac{1}{3} \int (1 - t) t^{-1/3} \, dt \] Using the formula for the integral of \( x^m(1-x)^n \): \[ \int x^m(1-x)^n \, dx = \frac{m!n!}{(m+n+1)!} \] Here, \( m = -\frac{1}{3} \) and \( n = 1 \). ### Step 7: Final Result After performing the integration and simplifying, we find: \[ -\frac{1}{3} \left( \frac{1! \cdot \frac{2}{3}!}{(\frac{2}{3}+1)!} \right) + C \] ### Conclusion Thus, the final answer for the integral \( \int \frac{x^8}{(1-x^3)^{1/3}} \, dx \) is: \[ -\frac{1}{3} \left( \frac{1! \cdot \frac{2}{3}!}{(\frac{2}{3}+1)!} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^3)/(x+1)dx

Evaluate: int(x^3)/(x+1)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int(x-1)(x-3)\dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx

Evaluate int_(1)^(3)x^(3)dx

Evaluate: int((x-1)e^x)/((x+1)^3)dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate: int (x^n + 1) dx