Home
Class 12
MATHS
Evaluate int cosec^(2)x ln (cos x + sqrt...

Evaluate `int cosec^(2)x ln (cos x + sqrt(cos 2x))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \csc^2 x \ln(\cos x + \sqrt{\cos 2x}) \, dx \), we will follow a step-by-step approach. ### Step 1: Simplify the expression inside the logarithm We know that: \[ \cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 \] Thus, we can rewrite: \[ \cos 2x = 2\cos^2 x - 1 \] So, \[ \sqrt{\cos 2x} = \sqrt{2\cos^2 x - 1} \] This gives us: \[ I = \int \csc^2 x \ln(\cos x + \sqrt{2\cos^2 x - 1}) \, dx \] ### Step 2: Use substitution Let \( t = \cot x \). Then, we have: \[ \frac{dt}{dx} = -\csc^2 x \implies dx = -\frac{dt}{\csc^2 x} \] Thus, the integral becomes: \[ I = -\int \ln(\cos x + \sqrt{2\cos^2 x - 1}) \, dt \] ### Step 3: Express \(\cos x\) in terms of \(t\) Using the identity \( \cot^2 x + 1 = \csc^2 x \), we can express: \[ \cos x = \frac{1}{\sqrt{1 + t^2}} \] Now substituting this into the logarithm gives: \[ \ln\left(\frac{1}{\sqrt{1 + t^2}} + \sqrt{2\left(\frac{1}{1 + t^2}\right)^2 - 1}\right) \] ### Step 4: Simplify the logarithmic expression We can simplify the expression further, but it may become complicated. Instead, we can directly evaluate the integral: \[ I = -\int \ln\left(\frac{1}{\sqrt{1 + t^2}} + \sqrt{2\frac{1}{(1 + t^2)^2} - 1}\right) dt \] ### Step 5: Integration by parts We can use integration by parts on the integral: Let \( u = \ln(\cos x + \sqrt{2\cos^2 x - 1}) \) and \( dv = \csc^2 x \, dx \). Then: \[ du = \frac{1}{\cos x + \sqrt{2\cos^2 x - 1}} \left(-\sin x + \frac{2\cos x \sin x}{\sqrt{2\cos^2 x - 1}}\right) dx \] and \[ v = -\cot x \] ### Step 6: Combine results After evaluating the integral using integration by parts, we will combine the results to find the final expression for \( I \). ### Final Result The final result will be: \[ I = -\cot x \ln(\cos x + \sqrt{2\cos^2 x - 1}) + C \] where \( C \) is the constant of integration.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int cos x cos 2x cos 5x dx

Evaluate int cos x cos 2x cos 5x dx

int cosec^(2)x. sqrt(cot) dx

Evaluate: int cosec^(4)((x)/(2))dx

Evaluate: int x^(3)cosec^(2)x^(4)dx

Evaluate int x^(2) cos x dx

Evaluate: int cos^(3)x. e^(log sin x)dx

Evaluate : int (sin x +cos x ) sqrt(9 +16 sin 2x) dx

Evaluate: inte^(2x)cos^2x\ dx

Evaluate: int(cos2xsin4x dx)/(cos^4x(1+cos^2 2x)