Home
Class 12
MATHS
Evaluate int(dx)/((sinx+a s e c x)^2) wh...

Evaluate `int(dx)/((sinx+a s e c x)^2)` when `|a|> 1/2.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(\sin x + a \sec x)^2} \] given that \(|a| > \frac{1}{2}\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can multiply the numerator and denominator by \(\sec^2 x\): \[ I = \int \frac{\sec^2 x \, dx}{(\sin x \sec x + a \sec^2 x)^2} \] ### Step 2: Simplify the Expression Using the identity \(\sec x = \frac{1}{\cos x}\) and \(\sin x \sec x = \tan x\), we can simplify the expression: \[ I = \int \frac{\sec^2 x \, dx}{(\tan x + a)^2} \] ### Step 3: Substitution Let us make the substitution \(t = \tan x\). Then, we have: \[ dt = \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] Thus, the integral becomes: \[ I = \int \frac{dt}{(t + a)^2} \] ### Step 4: Evaluate the Integral The integral \(\int \frac{dt}{(t + a)^2}\) can be evaluated using the formula: \[ \int \frac{dx}{(x + b)^n} = -\frac{1}{(n-1)(x + b)^{n-1}} + C \quad \text{for } n \neq 1 \] In our case, \(n = 2\): \[ I = -\frac{1}{(t + a)} + C = -\frac{1}{(\tan x + a)} + C \] ### Step 5: Final Result Thus, the final result of the integral is: \[ I = -\frac{1}{\tan x + a} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate. int(dx)/(sinx+sin2x)

Evaluate: inte^(2x)sinx\ dx

Evaluate: inte^(2x)sinx\ dx

Evaluate : int(dx)/(sinx+sin2x)

Evaluate: inte^(-2x)sinx\ dx

Evaluate: int1/(1-2sinx)dx

Evaluate: int(dx)/((1+sinx)^(1/2))

Evaluate: int1/(1-2sinx)\ dx

Evaluate: int(sinx)/(2+sin2x)dx

Evaluate: int1/(sinx-sin2x)dx