Home
Class 12
MATHS
If y^(2)=ax^(2)+2bx+c and u(n)= int (x^(...

If `y^(2)=ax^(2)+2bx+c` and `u_(n)= int (x^(n))/(y)dx`, prove that `(n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y` and deduce that `au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to (a) n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .