Home
Class 12
MATHS
The value of overset(sin^(2)x)underset...

The value of
`overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt`, is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ I = \int_0^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_0^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] ### Step 1: Define the Integrals Let: \[ I_1 = \int_0^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt \] \[ I_2 = \int_0^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] Then, we have: \[ I = I_1 + I_2 \] ### Step 2: Evaluate \(I_1\) For \(I_1\), we will use the substitution \(t = \sin^2 \theta\). Then, we have: \[ dt = 2\sin \theta \cos \theta \, d\theta = \sin(2\theta) \, d\theta \] The limits change as follows: - When \(t = 0\), \(\theta = 0\) - When \(t = \sin^2 x\), \(\theta = x\) Thus, we can rewrite \(I_1\): \[ I_1 = \int_0^x \sin^{-1}(\sqrt{\sin^2 \theta}) \sin(2\theta) \, d\theta \] Since \(\sin^{-1}(\sin \theta) = \theta\): \[ I_1 = \int_0^x \theta \sin(2\theta) \, d\theta \] ### Step 3: Evaluate \(I_2\) For \(I_2\), we use the substitution \(t = \cos^2 \theta\): \[ dt = -2\cos \theta \sin \theta \, d\theta = -\sin(2\theta) \, d\theta \] The limits change as follows: - When \(t = 0\), \(\theta = \frac{\pi}{2}\) - When \(t = \cos^2 x\), \(\theta = x\) Thus, we can rewrite \(I_2\): \[ I_2 = \int_{\frac{\pi}{2}}^x \cos^{-1}(\sqrt{\cos^2 \theta}) (-\sin(2\theta)) \, d\theta \] Since \(\cos^{-1}(\cos \theta) = \theta\): \[ I_2 = \int_x^{\frac{\pi}{2}} \theta \sin(2\theta) \, d\theta \] ### Step 4: Combine \(I_1\) and \(I_2\) Now, we combine \(I_1\) and \(I_2\): \[ I = \int_0^x \theta \sin(2\theta) \, d\theta + \int_x^{\frac{\pi}{2}} \theta \sin(2\theta) \, d\theta \] Using the property of integrals: \[ I = \int_0^{\frac{\pi}{2}} \theta \sin(2\theta) \, d\theta \] ### Step 5: Evaluate the Final Integral Now we need to evaluate: \[ \int_0^{\frac{\pi}{2}} \theta \sin(2\theta) \, d\theta \] Using integration by parts, let: - \(u = \theta\) and \(dv = \sin(2\theta) d\theta\) - Then, \(du = d\theta\) and \(v = -\frac{1}{2} \cos(2\theta)\) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] \[ = -\frac{1}{2} \theta \cos(2\theta) \bigg|_0^{\frac{\pi}{2}} + \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2\theta) d\theta \] Calculating the boundary term: \[ = -\frac{1}{2} \left( \frac{\pi}{2} \cdot \cos(\pi) - 0 \cdot \cos(0) \right) + \frac{1}{2} \left( \frac{\sin(2\theta)}{2} \bigg|_0^{\frac{\pi}{2}} \right) \] \[ = -\frac{1}{2} \left( \frac{\pi}{2} \cdot (-1) \right) + 0 \] \[ = \frac{\pi}{4} \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Area of bounded Regions Exercise 7: Subjective Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|8 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(t))dt

int(1)/(sqrt(t)+1)dt

int sqrt(t)dt

int_(0)^(9)[sqrt(t)]dt .

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

Given overset(2)underset(1)inte^(x^(2))dx=a , the value of overset(e^(4))underset(e )int sqrt(log_(e )x)dx , is

Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 for all x in (0,1) and f((1)/(2))=(sqrt(3))/(2) . Suppose for all x, underset(x to x)lim(overset(1)underset(0)int sqrt(1(f(s))^(2))dxoverset(x)underset(0)int sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x) Then, the value of f((1)/(4)) belongs to

int(dt)/( sqrt(t-1))

int(dt)/( sqrt(1-t)-t)

ARIHANT MATHS ENGLISH-AREA OF BOUNDED REGIONS-Exercise (Subjective Type Questions)
  1. Find the continuous function f where (x^4-4x^2)lt=f(x)lt=(2x^2-x^3) su...

    Text Solution

    |

  2. Let f(t)=|t-1|-|t|+|t+1|, AA t in R. Find g(x) = max {f(t):x+1letlex+2...

    Text Solution

    |

  3. Let f(x)= minimum {e^(x),3//2,1+e^(-x)},0lexle1. Find the area bounded...

    Text Solution

    |

  4. Find the area bounded by y=f(x) and the curve y=2/(1+x^2) satisfying ...

    Text Solution

    |

  5. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  6. Let T be an acute triangle Inscribe a pair R,S of rectangle in T as sh...

    Text Solution

    |

  7. Find the maximum area of the ellipse that can be inscribed in an isoce...

    Text Solution

    |

  8. Find the area of the region bounded by curve y=25^(x)+16 and the curve...

    Text Solution

    |

  9. If the circles of the maximum area inscriabed in the region bounded by...

    Text Solution

    |

  10. Find limit of the ratio of the area of the triangle formed by the orig...

    Text Solution

    |

  11. Find the area of curve enclosed by |x+y|+|x-y|le4,|x|le1, y ge sqrt(x^...

    Text Solution

    |

  12. Calculate the area enclosed by the curve 4lex^(2)+y^(2)le2(|x|+|y|).

    Text Solution

    |

  13. Find the area enclosed by the curve [x]+[y]-4 in 1st quadrant (where [...

    Text Solution

    |

  14. Sketch the region and find the area bounded by the curves |y+x|le1,|y-...

    Text Solution

    |

  15. Find the area of the region bounded by the curve 2^(|x|)|y|+2^(|x|-1)l...

    Text Solution

    |

  16. The value of the parameter a(a>=1) for which the area of the figure bo...

    Text Solution

    |