Home
Class 12
MATHS
Show that (i) sin^(8)A-cos^(8)A=(sin^(...

Show that
(i) `sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A)`
(ii) `(1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will break down each part step by step. ### Part (i): Show that \[ \sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(1 - 2\sin^2 A \cos^2 A) \] #### Step 1: Start with the left-hand side (LHS) We begin with the expression: \[ \sin^8 A - \cos^8 A \] #### Step 2: Use the difference of squares Recognizing that \(a^2 - b^2 = (a - b)(a + b)\), we can rewrite: \[ \sin^8 A - \cos^8 A = (\sin^4 A - \cos^4 A)(\sin^4 A + \cos^4 A) \] #### Step 3: Apply the difference of squares again Now, we apply the difference of squares to \(\sin^4 A - \cos^4 A\): \[ \sin^4 A - \cos^4 A = (\sin^2 A - \cos^2 A)(\sin^2 A + \cos^2 A) \] Since \(\sin^2 A + \cos^2 A = 1\), we have: \[ \sin^4 A - \cos^4 A = (\sin^2 A - \cos^2 A)(1) \] Thus, \[ \sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(\sin^4 A + \cos^4 A) \] #### Step 4: Simplify \(\sin^4 A + \cos^4 A\) We know: \[ \sin^4 A + \cos^4 A = (\sin^2 A + \cos^2 A)^2 - 2\sin^2 A \cos^2 A = 1 - 2\sin^2 A \cos^2 A \] So, substituting this back, we get: \[ \sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(1 - 2\sin^2 A \cos^2 A) \] #### Conclusion for Part (i) Thus, we have shown that: \[ \sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(1 - 2\sin^2 A \cos^2 A) \] --- ### Part (ii): Show that \[ \frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A + \tan A} \] #### Step 1: Start with the left-hand side (LHS) We begin with: \[ \frac{1}{\sec A - \tan A} - \frac{1}{\cos A} \] #### Step 2: Rewrite \(\sec A\) and \(\tan A\) Recall that: \[ \sec A = \frac{1}{\cos A}, \quad \tan A = \frac{\sin A}{\cos A} \] Thus: \[ \sec A - \tan A = \frac{1 - \sin A}{\cos A} \] So, we rewrite the LHS: \[ \frac{1}{\frac{1 - \sin A}{\cos A}} - \frac{1}{\cos A} = \frac{\cos A}{1 - \sin A} - \frac{1}{\cos A} \] #### Step 3: Take the common denominator The common denominator for the two fractions is \(\cos A(1 - \sin A)\): \[ \frac{\cos^2 A - (1 - \sin A)}{\cos A(1 - \sin A)} = \frac{\cos^2 A + \sin A - 1}{\cos A(1 - \sin A)} \] Using the identity \(\cos^2 A = 1 - \sin^2 A\): \[ \cos^2 A + \sin A - 1 = (1 - \sin^2 A) + \sin A - 1 = -\sin^2 A + \sin A \] Thus, we have: \[ \frac{\sin A(1 - \sin A)}{\cos A(1 - \sin A)} = \frac{\sin A}{\cos A} = \tan A \] #### Step 4: Now simplify the right-hand side (RHS) The RHS is: \[ \frac{1}{\cos A} - \frac{1}{\sec A + \tan A} \] Again, rewrite \(\sec A + \tan A\): \[ \sec A + \tan A = \frac{1 + \sin A}{\cos A} \] Thus, we have: \[ \frac{1}{\cos A} - \frac{\cos A}{1 + \sin A} = \frac{1(1 + \sin A) - \cos^2 A}{\cos A(1 + \sin A)} \] Using \(\cos^2 A = 1 - \sin^2 A\): \[ 1(1 + \sin A) - (1 - \sin^2 A) = \sin A + \sin^2 A \] So, we have: \[ \frac{\sin A(1 + \sin A)}{\cos A(1 + \sin A)} = \frac{\sin A}{\cos A} = \tan A \] #### Conclusion for Part (ii) Thus, we have shown that: \[ \frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A + \tan A} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Show that: 1/(sec A-tan A) - 1/(cos A) = 1/(cos A) - 1/(sec A + tan A)

Show that : sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

Prove that: [1/(sec^(2)A-cos^(2)A)+1/("cosec"^(2)A-sin^(2)A)].sin^(2)A.cos^(2)A=(1-sin^(2)Acos^(2)A)/(2+sin^(2)Acos^(2)A)

(cos A - sin A )/( cos A + sin A ) = sec 2 A - tan 2 A.

Prove that : (cos A)/(1 + sin A) = sec A - tan A

(1+sec A)/(sec A)=(sin^(2)A)/(1-cos A)

Prove that: (1 + sec A)/(sec A)= (sin^(2)A)/(1-cos A)

Prove that : (1)/ (sin A - cos A) - (1)/ (sin A + cos A) = (2 cos A)/(2 sin^(2) A - 1)

(1- sin A - cos A)^2 = 2 (1-sin A) (1-cos A)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |