Home
Class 12
MATHS
If a sec alpha-c tan alpha=d and b sec a...

If `a sec alpha-c tan alpha=d` and `b sec alpha + d tan alpha=c`, then eliminate `alpha` from above equations.

Text Solution

AI Generated Solution

The correct Answer is:
To eliminate \(\alpha\) from the equations \(a \sec \alpha - c \tan \alpha = d\) and \(b \sec \alpha + d \tan \alpha = c\), we will follow these steps: ### Step 1: Multiply the first equation by \(d\) We start with the first equation: \[ a \sec \alpha - c \tan \alpha = d \] Multiplying both sides by \(d\): \[ a d \sec \alpha - c d \tan \alpha = d^2 \] ### Step 2: Multiply the second equation by \(c\) Now, we take the second equation: \[ b \sec \alpha + d \tan \alpha = c \] Multiplying both sides by \(c\): \[ b c \sec \alpha + d c \tan \alpha = c^2 \] ### Step 3: Add the two modified equations Now we have: 1. \(a d \sec \alpha - c d \tan \alpha = d^2\) 2. \(b c \sec \alpha + d c \tan \alpha = c^2\) Adding these two equations: \[ (a d + b c) \sec \alpha + (-c d + d c) \tan \alpha = d^2 + c^2 \] The \(\tan \alpha\) terms cancel out: \[ (a d + b c) \sec \alpha = d^2 + c^2 \] ### Step 4: Solve for \(\sec \alpha\) Rearranging gives: \[ \sec \alpha = \frac{d^2 + c^2}{a d + b c} \] ### Step 5: Substitute \(\sec \alpha\) back into the first equation From the first equation, we can express \(\tan \alpha\): \[ c \tan \alpha = a \sec \alpha - d \] Substituting \(\sec \alpha\): \[ c \tan \alpha = a \left(\frac{d^2 + c^2}{a d + b c}\right) - d \] This simplifies to: \[ c \tan \alpha = \frac{a(d^2 + c^2) - d(a d + b c)}{a d + b c} \] Simplifying the numerator: \[ c \tan \alpha = \frac{ad^2 + ac^2 - ad^2 - bcd}{a d + b c} \] Thus: \[ c \tan \alpha = \frac{ac^2 - bcd}{a d + b c} \] ### Step 6: Use the identity \(\sec^2 \alpha - \tan^2 \alpha = 1\) Using the identity: \[ \sec^2 \alpha - \tan^2 \alpha = 1 \] Substituting our expressions for \(\sec \alpha\) and \(\tan \alpha\): \[ \left(\frac{d^2 + c^2}{a d + b c}\right)^2 - \left(\frac{ac^2 - bcd}{a d + b c}\right)^2 = 1 \] ### Step 7: Simplify the equation This leads to: \[ \frac{(d^2 + c^2)^2 - (ac^2 - bcd)^2}{(a d + b c)^2} = 1 \] Cross-multiplying gives: \[ (d^2 + c^2)^2 - (ac^2 - bcd)^2 = (a d + b c)^2 \] ### Step 8: Rearranging the equation After simplification, we arrive at: \[ c^2 + d^2 = a^2 + b^2 \] ### Final Result Thus, we have eliminated \(\alpha\) and derived the relationship: \[ c^2 + d^2 = a^2 + b^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

Prove that cot alpha - tan alpha =2 cot 2 alpha.

If 2sec^2 alpha- sec^4 alpha-2 cosec^2 alpha+cosec^4 alpha=15/4 then tan alpha=

Solve : tan ^(2) alpha + sec alpha - 1 = 0,0 le alpha lt 2pi.

write tan 8 alpha in temrs of tan 4 alpha .

If minor of three-one element (i.e.M_(31)) in the determinant [{:(,0,1,sec alpha),(,tan alpha,-sec alpha,tan alpha),(,1,0,1)]:} is 1 then find the value of alpha (0 le alpha le pi).

Statement I tan alpha+2tan 2 alpha+4 tan 4 alpha + 8 tan 8 alpha+16 cot 16 alpha=cot alpha Statement II cot alpha- tan alpha=2 cot 2 alpha

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

if (1+tan alpha )(1+tan4 alpha ) =2 where alpha in (0 , pi/16 ) then alpha equal to

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan alpha is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a sec alpha-c tan alpha=d and b sec alpha + d tan alpha=c, then eli...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |