Home
Class 12
MATHS
If 0 lt theta lt pi/2, x= sum(n=0)^(oo) ...

If `0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta` and `z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta`, then show `xyz=xy+z`.
(a) xyz = xz + y
(b) xyz = xy + z
(c) xyz = x + y + z
(d) xyz = yz + x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \), \( y \), and \( z \) based on the given infinite series and then show that \( xyz = xy + z \). ### Step 1: Find \( x \) Given: \[ x = \sum_{n=0}^{\infty} \cos^{2n} \theta \] This is a geometric series with the first term \( a = 1 \) and the common ratio \( r = \cos^2 \theta \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Thus, we have: \[ x = \frac{1}{1 - \cos^2 \theta} = \frac{1}{\sin^2 \theta} \] ### Step 2: Find \( y \) Given: \[ y = \sum_{n=0}^{\infty} \sin^{2n} \theta \] This is also a geometric series with the first term \( a = 1 \) and the common ratio \( r = \sin^2 \theta \). Therefore: \[ y = \frac{1}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta} \] ### Step 3: Find \( z \) Given: \[ z = \sum_{n=0}^{\infty} \cos^{2n} \theta \sin^{2n} \theta \] This is a geometric series with the first term \( a = 1 \) and the common ratio \( r = \cos^2 \theta \sin^2 \theta \). Thus: \[ z = \frac{1}{1 - \cos^2 \theta \sin^2 \theta} \] ### Step 4: Show that \( xyz = xy + z \) Now substituting the values of \( x \), \( y \), and \( z \): \[ xyz = \left(\frac{1}{\sin^2 \theta}\right) \left(\frac{1}{\cos^2 \theta}\right) \left(\frac{1}{1 - \cos^2 \theta \sin^2 \theta}\right) \] \[ = \frac{1}{\sin^2 \theta \cos^2 \theta (1 - \cos^2 \theta \sin^2 \theta)} \] Now for \( xy + z \): \[ xy = \left(\frac{1}{\sin^2 \theta}\right) \left(\frac{1}{\cos^2 \theta}\right) = \frac{1}{\sin^2 \theta \cos^2 \theta} \] \[ xy + z = \frac{1}{\sin^2 \theta \cos^2 \theta} + \frac{1}{1 - \cos^2 \theta \sin^2 \theta} \] Finding a common denominator for \( xy + z \): \[ = \frac{1(1 - \cos^2 \theta \sin^2 \theta) + \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta (1 - \cos^2 \theta \sin^2 \theta)} \] \[ = \frac{1 - \cos^2 \theta \sin^2 \theta + \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta (1 - \cos^2 \theta \sin^2 \theta)} \] \[ = \frac{1}{\sin^2 \theta \cos^2 \theta (1 - \cos^2 \theta \sin^2 \theta)} \] Thus, we have: \[ xyz = xy + z \] ### Conclusion We have shown that: \[ xyz = xy + z \] Therefore, the answer is: **(b) \( xyz = xy + z \)**
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

"For "0ltthetalt(pi)/(2) , if x=sum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)phi , then

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi , where 0lttheta,varphi ltpi//2 prove that x z+y z-z=x ydot

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi,w h e r e0 < theta,varphi < pi//2 prove that x z+y z-z=x ydot

Let x= sum_(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum_(n=0)^oo (costheta)^(2n) qhere theta in (0,pi/4) , then

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If 0 lt y lt 1 , then sum_(n=1)^(oo)(1)/(2n-1)*y^(n+1)=……

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If 0 lt theta lt pi/2, x= sum(n=0)^(oo) cos^(2n) theta, y= sum(n=0)^(...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |