Home
Class 12
MATHS
Evaluate sin{ n pi+(-1)^(n) (pi)/(4), wh...

Evaluate `sin{ n pi+(-1)^(n) (pi)/(4)`, where n is an integer.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin\left(n \pi + (-1)^{n} \frac{\pi}{4}\right) \), where \( n \) is an integer, we can break it down step by step. ### Step 1: Understand the expression The expression consists of two parts: \( n \pi \) and \( (-1)^{n} \frac{\pi}{4} \). The term \( n \pi \) represents integer multiples of \( \pi \), and the term \( (-1)^{n} \frac{\pi}{4} \) will alternate between \( \frac{\pi}{4} \) and \( -\frac{\pi}{4} \) depending on whether \( n \) is even or odd. ### Step 2: Evaluate the sine function Using the sine angle addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] we can set \( a = n \pi \) and \( b = (-1)^{n} \frac{\pi}{4} \). ### Step 3: Calculate \( \sin(n \pi) \) and \( \cos(n \pi) \) - For any integer \( n \): \[ \sin(n \pi) = 0 \] \[ \cos(n \pi) = (-1)^{n} \] ### Step 4: Evaluate \( \sin\left((-1)^{n} \frac{\pi}{4}\right) \) and \( \cos\left((-1)^{n} \frac{\pi}{4}\right) \) - When \( n \) is even, \( (-1)^{n} = 1 \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] - When \( n \) is odd, \( (-1)^{n} = -1 \): \[ \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}, \quad \cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 5: Substitute back into the sine addition formula - For even \( n \): \[ \sin\left(n \pi + \frac{\pi}{4}\right) = \sin(n \pi) \cos\left(\frac{\pi}{4}\right) + \cos(n \pi) \sin\left(\frac{\pi}{4}\right) = 0 \cdot \frac{1}{\sqrt{2}} + (-1)^{n} \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] - For odd \( n \): \[ \sin\left(n \pi - \frac{\pi}{4}\right) = \sin(n \pi) \cos\left(-\frac{\pi}{4}\right) + \cos(n \pi) \sin\left(-\frac{\pi}{4}\right) = 0 \cdot \frac{1}{\sqrt{2}} + (-1)^{n} \cdot \left(-\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \] ### Final Result In both cases, whether \( n \) is even or odd, we find that: \[ \sin\left(n \pi + (-1)^{n} \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Conclusion Thus, the final answer is: \[ \boxed{\frac{1}{\sqrt{2}}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan{(-1)^n pi/4} where n is an integer

Prove that : tan^(-1) (e^(itheta)) = (n pi)/2 + pi/4 +i/2 ln" tan(pi/4 + theta /2) ,where n is an integer.

Evaluate: tan{2t a n-1 1/5+pi/4}

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Find lim_(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6) , where [.] is a greatest integer function and "n" epsilonI .

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)

The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N , is valid is 5.

For a positive integer n, let I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] where [.] denotes greatest integer function.

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate sin{ n pi+(-1)^(n) (pi)/(4), where n is an integer.

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |