Home
Class 12
MATHS
Find the value of (cot 25^@+cot55^@)/(ta...

Find the value of `(cot 25^@+cot55^@)/(tan 25^@ + tan 55^@)+(cot 55^@ + cot100^@)/(tan 55^@ + tan 100^@)+(cot100^@ + cot 25^@)/(tan 100^@+tan 25^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \frac{\cot 25^\circ + \cot 55^\circ}{\tan 25^\circ + \tan 55^\circ} + \frac{\cot 55^\circ + \cot 100^\circ}{\tan 55^\circ + \tan 100^\circ} + \frac{\cot 100^\circ + \cot 25^\circ}{\tan 100^\circ + \tan 25^\circ} \] we will simplify each term step by step. ### Step 1: Simplifying the first term We start with the first term: \[ \frac{\cot 25^\circ + \cot 55^\circ}{\tan 25^\circ + \tan 55^\circ} \] Using the identity \(\cot x = \frac{1}{\tan x}\), we can rewrite the numerator: \[ \cot 25^\circ + \cot 55^\circ = \frac{1}{\tan 25^\circ} + \frac{1}{\tan 55^\circ} = \frac{\tan 55^\circ + \tan 25^\circ}{\tan 25^\circ \tan 55^\circ} \] Now substituting this back into the expression: \[ \frac{\frac{\tan 55^\circ + \tan 25^\circ}{\tan 25^\circ \tan 55^\circ}}{\tan 25^\circ + \tan 55^\circ} \] This simplifies to: \[ \frac{1}{\tan 25^\circ \tan 55^\circ} \] ### Step 2: Simplifying the second term Now, consider the second term: \[ \frac{\cot 55^\circ + \cot 100^\circ}{\tan 55^\circ + \tan 100^\circ} \] Again using the cotangent identity: \[ \cot 55^\circ + \cot 100^\circ = \frac{1}{\tan 55^\circ} + \frac{1}{\tan 100^\circ} = \frac{\tan 100^\circ + \tan 55^\circ}{\tan 55^\circ \tan 100^\circ} \] Substituting this back gives: \[ \frac{\frac{\tan 100^\circ + \tan 55^\circ}{\tan 55^\circ \tan 100^\circ}}{\tan 55^\circ + \tan 100^\circ} \] This simplifies to: \[ \frac{1}{\tan 55^\circ \tan 100^\circ} \] ### Step 3: Simplifying the third term Now, we simplify the third term: \[ \frac{\cot 100^\circ + \cot 25^\circ}{\tan 100^\circ + \tan 25^\circ} \] Using the cotangent identity again: \[ \cot 100^\circ + \cot 25^\circ = \frac{1}{\tan 100^\circ} + \frac{1}{\tan 25^\circ} = \frac{\tan 25^\circ + \tan 100^\circ}{\tan 100^\circ \tan 25^\circ} \] Substituting this back gives: \[ \frac{\frac{\tan 25^\circ + \tan 100^\circ}{\tan 100^\circ \tan 25^\circ}}{\tan 100^\circ + \tan 25^\circ} \] This simplifies to: \[ \frac{1}{\tan 100^\circ \tan 25^\circ} \] ### Step 4: Combining all terms Now we can combine all three simplified terms: \[ \frac{1}{\tan 25^\circ \tan 55^\circ} + \frac{1}{\tan 55^\circ \tan 100^\circ} + \frac{1}{\tan 100^\circ \tan 25^\circ} \] Let \(x = \tan 25^\circ\), \(y = \tan 55^\circ\), and \(z = \tan 100^\circ\). We know from the tangent addition formula that: \[ \tan 25^\circ + \tan 55^\circ + \tan 100^\circ = \tan 180^\circ = 0 \] Thus, we can express the sum as: \[ \frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} \] This can be rewritten as: \[ \frac{z + x + y}{xyz} \] Since \(x + y + z = 0\), we find that: \[ \frac{0}{xyz} = 0 \] ### Final Result Thus, the value of the entire expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of (cot25^0+cot55^0)/(tan25^0+tan55^0)+(cot55^0+cot100^0)/(tan55^0+tan100^0)+(cot100^0+cot25^0)/(tan100^0+tan25^0)

Find the value of (tan25^(@))/(cot65^(@)) .

Find the value of (tan 495^(@))/(cot 855^(@))

Find the value of (tan 9^(@)+cot9^(@))/(tan27^(@)+cot27^(@)) .

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of cot54^@/(tan36^@)+tan20^@/(cot70^@)

Find the value of: cot(tan^(-1)a+cot^(-1)a)

: Find the value of cot (tan^-1 α + cot^-1 α).

Find the value of tan { cot ^(-1) ((-2)/3)}

find the value of tan^(-1){cot(-1/4)}

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the value of (cot 25^@+cot55^@)/(tan 25^@ + tan 55^@)+(cot 55^@ +...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |