Home
Class 12
MATHS
The smallest positive value of x (in deg...

The smallest positive value of x (in degrees) for which `tan(x+100^@)=tan(x+50^@).tanx.tan(x-50^@)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(x + 100^\circ) = \tan(x + 50^\circ) \tan x \tan(x - 50^\circ) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan(x + 100^\circ) = \tan(x + 50^\circ) \tan x \tan(x - 50^\circ) \] ### Step 2: Use the tangent addition formula Using the tangent addition formula, we can express the left-hand side: \[ \tan(x + 100^\circ) = \frac{\tan x + \tan 100^\circ}{1 - \tan x \tan 100^\circ} \] Since \( \tan 100^\circ = -\tan 80^\circ \), we can rewrite this as: \[ \tan(x + 100^\circ) = \frac{\tan x - \tan 80^\circ}{1 + \tan x \tan 80^\circ} \] ### Step 3: Rewrite the right-hand side For the right-hand side, we can use the product of tangents: \[ \tan(x + 50^\circ) = \frac{\tan x + \tan 50^\circ}{1 - \tan x \tan 50^\circ} \] Thus, we have: \[ \tan(x + 50^\circ) \tan x \tan(x - 50^\circ) = \left(\frac{\tan x + \tan 50^\circ}{1 - \tan x \tan 50^\circ}\right) \tan x \left(\frac{\tan x - \tan 50^\circ}{1 - \tan x \tan 50^\circ}\right) \] ### Step 4: Simplify the equation Now we can simplify both sides of the equation. This may involve cross-multiplying and simplifying the terms. ### Step 5: Set the equation to zero After simplification, we will set the equation to zero and solve for \( x \). ### Step 6: Find the general solution The equation will yield a general solution for \( x \). We will need to find the smallest positive value of \( x \). ### Step 7: Substitute values To find the smallest positive value, we can substitute integer values for \( n \) in the general solution until we find the smallest positive \( x \). ### Step 8: Calculate the smallest positive value After performing the calculations, we find: \[ x = 30^\circ \] ### Final Answer The smallest positive value of \( x \) is: \[ \boxed{30^\circ} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The smallest positive value of x (in degrees) for whichcos tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@) is equal to

The smallest positive values of x and y which satisfy "tan" (x-y) =1, "sec" (x+y) = (2)/(sqrt(3)) , are

Find the set of values of x for which (tan3x-tan2x)/(1+tan3x.tan2x)=1 .

Find the set of values of x for which (tan 3x - tan 2x)/ (1+ tan3x tan 2x) = 1

int tanx.tan2x.tan3xdx =

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

tan 5x tan3x tan2x=

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

The general solution of the equation tanx+ tan2x + tanx.tan2x= 1 is

The value of tan10^@tan50^@tan70^@ is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The smallest positive value of x (in degrees) for which tan(x+100^@)...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |