Home
Class 12
MATHS
Show that (1+tan .theta/2)/(1-tan. thet...

Show that `(1+tan .theta/2)/(1-tan. theta/2)=(1+sintheta)/(cos theta)=tan(pi/4+theta/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{1 + \tan(\theta/2)}{1 - \tan(\theta/2)} = \frac{1 + \sin \theta}{\cos \theta} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right), \] we will break it down into two parts: 1. Proving that \(\frac{1 + \tan(\theta/2)}{1 - \tan(\theta/2)} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\) 2. Proving that \(\frac{1 + \sin \theta}{\cos \theta} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\) ### Step 1: Proving \(\frac{1 + \tan(\theta/2)}{1 - \tan(\theta/2)} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\) Using the tangent addition formula: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Let \(a = \frac{\pi}{4}\) and \(b = \frac{\theta}{2}\). We know that \(\tan\left(\frac{\pi}{4}\right) = 1\). Therefore, we can write: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - 1 \cdot \tan\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \] Thus, we have shown that: \[ \frac{1 + \tan(\theta/2)}{1 - \tan(\theta/2)} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) \] ### Step 2: Proving \(\frac{1 + \sin \theta}{\cos \theta} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\) We can express \(\sin \theta\) and \(\cos \theta\) in terms of half-angle formulas: \[ \sin \theta = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \] \[ \cos \theta = \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right) = \cos^2\left(\frac{\theta}{2}\right) - (1 - \cos^2\left(\frac{\theta}{2}\right)) = 2\cos^2\left(\frac{\theta}{2}\right) - 1 \] Now substituting these into the left-hand side: \[ \frac{1 + \sin \theta}{\cos \theta} = \frac{1 + 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)}{2\cos^2\left(\frac{\theta}{2}\right) - 1} \] This can be simplified further, but we can also directly relate it to the tangent addition formula. Since we already proved that: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \] and since both sides are equal to \(\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\), we conclude that: \[ \frac{1 + \sin \theta}{\cos \theta} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) \] ### Conclusion Thus, we have shown that: \[ \frac{1 + \tan(\theta/2)}{1 - \tan(\theta/2)} = \frac{1 + \sin \theta}{\cos \theta} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Prove that : (1+ sin theta)/(1-sin theta) = tan^2 (pi/4 + theta/2)

Simplify: (1+tan^(2)theta)(1-sintheta)(1+sintheta)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Show that (1+tan .theta/2)/(1-tan. theta/2)=(1+sintheta)/(cos theta)=...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |