Home
Class 12
MATHS
If tan x = -(4)/(3), (pi)/(2) lt x lt p...

If `tan x = -(4)/(3), (pi)/(2) lt x lt pi`, then find the value of `sin(x/2), cos(x/2)` and `tan(x/2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \sin\left(\frac{x}{2}\right) \), \( \cos\left(\frac{x}{2}\right) \), and \( \tan\left(\frac{x}{2}\right) \) given that \( \tan x = -\frac{4}{3} \) and \( \frac{\pi}{2} < x < \pi \). ### Step 1: Determine the value of \( \sin x \) and \( \cos x \) Since \( \tan x = \frac{\sin x}{\cos x} \), we can use the relationship: \[ \tan x = -\frac{4}{3} \implies \sin x = -4k \quad \text{and} \quad \cos x = 3k \] where \( k \) is a positive constant. Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ (-4k)^2 + (3k)^2 = 1 \] \[ 16k^2 + 9k^2 = 1 \] \[ 25k^2 = 1 \implies k^2 = \frac{1}{25} \implies k = \frac{1}{5} \] Now substituting back to find \( \sin x \) and \( \cos x \): \[ \sin x = -4k = -4 \cdot \frac{1}{5} = -\frac{4}{5} \] \[ \cos x = 3k = 3 \cdot \frac{1}{5} = \frac{3}{5} \] ### Step 2: Find \( \sin\left(\frac{x}{2}\right) \) and \( \cos\left(\frac{x}{2}\right) \) Using the half-angle formulas: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} \quad \text{and} \quad \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos x}{2}} \] Substituting \( \cos x = \frac{3}{5} \): \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \] \[ \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \] ### Step 3: Find \( \tan\left(\frac{x}{2}\right) \) Using the formula: \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \] Substituting the values we found: \[ \tan\left(\frac{x}{2}\right) = \frac{\frac{\sqrt{5}}{5}}{\frac{2\sqrt{5}}{5}} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2} \] ### Final Answers Thus, the values are: \[ \sin\left(\frac{x}{2}\right) = \frac{\sqrt{5}}{5}, \quad \cos\left(\frac{x}{2}\right) = \frac{2\sqrt{5}}{5}, \quad \tan\left(\frac{x}{2}\right) = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi , find the value of 9sec^(2)x-4 cot x .

If tanx=3/4, piltxlt(3pi)/2, find the value of sin(x/2) , cos(x/2), tan(x/2)

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

If tanx=3/4, pi < x < (3pi)/2 , find the values of sin x/2 , cos x/2 and tan x/2.

If sin x = 1/4 , pi/2 lt x lt pi , find the values of cos\ x/2 and tan\ x/2 .

If pi/2 lt x lt pi , then find d/dx(sqrt((1+cos2x)/2))

If 0 lt x lt (pi)/(2) and cos x = 0.34 , what is the value of sin ((x)/(2)) ?

If tanA=-3/4 and pi/2 lt A lt pi , find the values of the following: i) sin(A/2) ii) cos(A/2) , iii) tan(A/2)

If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If tan x = -(4)/(3), (pi)/(2) lt x lt pi, then find the value of sin(...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |