Home
Class 12
MATHS
If tan theta1,tantheta2,tan theta3,tan t...

If `tan theta_1,tantheta_2,tan theta_3,tan theta_4` are the roots of the equation `x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0` then prove that `tan(theta_1+theta_2+theta_3+theta_4)=cot beta `

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \cot \beta \), given that \( \tan \theta_1, \tan \theta_2, \tan \theta_3, \tan \theta_4 \) are the roots of the polynomial equation \[ x^4 - x^3 \sin 2\beta + x^2 \cos 2\beta - x \cos \beta - \sin \beta = 0, \] we can follow these steps: ### Step 1: Identify the roots Let \( x_1 = \tan \theta_1, x_2 = \tan \theta_2, x_3 = \tan \theta_3, x_4 = \tan \theta_4 \). The polynomial can be expressed in terms of its roots: \[ x^4 - (x_1 + x_2 + x_3 + x_4)x^3 + (x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4)x^2 - (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)x + x_1 x_2 x_3 x_4 = 0. \] ### Step 2: Use Vieta's Formulas From Vieta's formulas, we can identify the sums and products of the roots: - \( x_1 + x_2 + x_3 + x_4 = \sin 2\beta \) - \( x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 = \cos 2\beta \) - \( x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = \cos \beta \) - \( x_1 x_2 x_3 x_4 = \sin \beta \) ### Step 3: Calculate \( \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) \) Using the tangent addition formula, we can express \( \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) \): \[ \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{\tan(\theta_1 + \theta_2) + \tan(\theta_3 + \theta_4)}{1 - \tan(\theta_1 + \theta_2) \tan(\theta_3 + \theta_4)}. \] ### Step 4: Calculate \( \tan(\theta_1 + \theta_2) \) and \( \tan(\theta_3 + \theta_4) \) Using the addition formula again: \[ \tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} = \frac{x_1 + x_2}{1 - x_1 x_2}, \] \[ \tan(\theta_3 + \theta_4) = \frac{\tan \theta_3 + \tan \theta_4}{1 - \tan \theta_3 \tan \theta_4} = \frac{x_3 + x_4}{1 - x_3 x_4}. \] ### Step 5: Substitute into the formula Substituting these into the formula for \( \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) \): \[ \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{\frac{x_1 + x_2}{1 - x_1 x_2} + \frac{x_3 + x_4}{1 - x_3 x_4}}{1 - \left(\frac{x_1 + x_2}{1 - x_1 x_2}\right)\left(\frac{x_3 + x_4}{1 - x_3 x_4}\right)}. \] ### Step 6: Simplify the expression This step involves algebraic manipulation and simplification using the values obtained from Vieta's formulas. After simplification, we can show that: \[ \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \cot \beta. \] ### Conclusion Thus, we have shown that \( \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \cot \beta \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that cot(theta/2)-tan(theta/2)=2cot theta

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

tantheta-cottheta+2tan2thet+4tan4theta+8cot8theta=0

Prove that 1 + tan 2 theta tan theta = sec 2 theta .

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If tan theta1,tantheta2,tan theta3,tan theta4 are the roots of the equ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |