Home
Class 12
MATHS
Evaluate sum(r=1)^(n-1) cos^(2) ((rpi)/...

Evaluate ` sum_(r=1)^(n-1) cos^(2) ((rpi)/(n))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( S = \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) \), we can follow these steps: ### Step 1: Use the identity for \(\cos^2\theta\) We know the identity: \[ \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \] Applying this identity to our sum: \[ S = \sum_{r=1}^{n-1} \cos^2\left(\frac{r\pi}{n}\right) = \sum_{r=1}^{n-1} \frac{1 + \cos\left(\frac{2r\pi}{n}\right)}{2} \] ### Step 2: Split the sum We can split the sum into two parts: \[ S = \frac{1}{2} \sum_{r=1}^{n-1} 1 + \frac{1}{2} \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \] ### Step 3: Evaluate the first sum The first sum is straightforward: \[ \sum_{r=1}^{n-1} 1 = n - 1 \] Thus, \[ \frac{1}{2} \sum_{r=1}^{n-1} 1 = \frac{n-1}{2} \] ### Step 4: Evaluate the second sum Now we need to evaluate the second sum: \[ \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) \] This is a sum of cosines in an arithmetic progression. The sum can be evaluated using the formula: \[ \sum_{r=0}^{m-1} \cos(a + r \cdot d) = \frac{\sin\left(\frac{md}{2}\right) \cdot \cos\left(a + \frac{(m-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] In our case, \(a = \frac{2\pi}{n}\), \(d = \frac{2\pi}{n}\), and \(m = n-1\): \[ \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = \frac{\sin\left(\frac{(n-1)\cdot \frac{2\pi}{n}}{2}\right) \cdot \cos\left(\frac{2\pi}{n} + \frac{(n-2)\cdot \frac{2\pi}{n}}{2}\right)}{\sin\left(\frac{\frac{2\pi}{n}}{2}\right)} \] ### Step 5: Simplify the second sum Calculating the sine and cosine: \[ \sin\left(\frac{(n-1)\cdot \frac{2\pi}{n}}{2}\right) = \sin\left(\frac{(n-1)\pi}{n}\right) = \sin\left(\pi - \frac{\pi}{n}\right) = \sin\left(\frac{\pi}{n}\right) \] And, \[ \cos\left(\frac{2\pi}{n} + \frac{(n-2)\cdot \frac{2\pi}{n}}{2}\right) = \cos\left(\frac{2\pi}{n} + \frac{(n-2)\pi}{n}\right) = \cos\left(\frac{n\pi}{n}\right) = \cos(\pi) = -1 \] Thus, we have: \[ \sum_{r=1}^{n-1} \cos\left(\frac{2r\pi}{n}\right) = \frac{\sin\left(\frac{\pi}{n}\right) \cdot (-1)}{\sin\left(\frac{\pi}{n}\right)} = -1 \] ### Step 6: Combine the results Putting it all together: \[ S = \frac{n-1}{2} + \frac{1}{2}(-1) = \frac{n-1}{2} - \frac{1}{2} = \frac{n-2}{2} \] ### Final Answer Thus, the evaluated sum is: \[ S = \frac{n-2}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=1)^(n)rxxr!

Evaluate: sum_(r=1)^n(3^r-2^r)

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

Evaluate sum_(n=1)^(1000)int_(n-1)^(n)|cos2pix|dx

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate sum(r=1)^(n-1) cos^(2) ((rpi)/(n)).

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |