Home
Class 12
MATHS
The sum 1/(sin4 5^(@)sin4 6^(@))+1/(sin4...

The sum `1/(sin4 5^(@)sin4 6^(@))+1/(sin4 7^(@)sin4 8^(@)) +1/(sin 49^@ sin 50^@)+...+1/(sin 133^@ sin 134^@)` is equal to

A

`sec(1^(@))`

B

`cosec(1^(@))`

C

`cot(1^(@))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sum: \[ S = \frac{1}{\sin 45^\circ \sin 46^\circ} + \frac{1}{\sin 47^\circ \sin 48^\circ} + \frac{1}{\sin 49^\circ \sin 50^\circ} + \ldots + \frac{1}{\sin 133^\circ \sin 134^\circ} \] ### Step 1: Rewrite the sum in a more manageable form We can express the sum \(S\) as: \[ S = \sum_{n=45}^{134} \frac{1}{\sin n^\circ \sin (n+1)^\circ} \] ### Step 2: Use the identity for sine We can use the identity: \[ \sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)] \] Thus, we can rewrite each term in the sum: \[ \sin n^\circ \sin (n+1)^\circ = \frac{1}{2} [\cos (n - (n+1)) - \cos (n + (n+1))] = \frac{1}{2} [\cos (-1) - \cos (2n + 1)] \] This gives us: \[ \frac{1}{\sin n^\circ \sin (n+1)^\circ} = \frac{2}{\cos 1^\circ - \cos (2n + 1)} \] ### Step 3: Substitute back into the sum Now substituting this back into our sum: \[ S = \sum_{n=45}^{134} \frac{2}{\cos 1^\circ - \cos (2n + 1)} \] ### Step 4: Simplifying the sum This sum can be complex, but we can use the telescoping nature of cotangent functions. We can express: \[ \frac{1}{\sin n^\circ \sin (n+1)^\circ} = \cot n^\circ - \cot (n+1)^\circ \] Thus, we can rewrite \(S\) as: \[ S = \sum_{n=45}^{134} (\cot n^\circ - \cot (n+1)^\circ) \] ### Step 5: Evaluate the telescoping series The above sum is telescoping, meaning that most terms will cancel out: \[ S = \cot 45^\circ - \cot 135^\circ \] ### Step 6: Calculate the cotangent values We know: \[ \cot 45^\circ = 1 \quad \text{and} \quad \cot 135^\circ = -1 \] Thus, we have: \[ S = 1 - (-1) = 1 + 1 = 2 \] ### Step 7: Final expression Now, we multiply by \( \frac{1}{\sin 1^\circ} \): \[ S = \frac{2}{\sin 1^\circ} \] This can be expressed as: \[ S = 2 \csc 1^\circ \] ### Conclusion Thus, the final answer is: \[ \boxed{2 \csc 1^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sin1 2^(@)sin4 8^(@)sin5 4^(@)=

sin 10 ^(@) sin 50^(@) sin 70^(@) = (1)/(8).

Value of (4\ sin 9^@ sin 21^@ sin 39^@ sin 51^@ sin 69^@ sin 81^@)/(sin 54^@) is equal to

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

sin^(-1)(cos((5pi)/4)) is equal to

sin^(-1)(sin ((7pi)/6))

sin^(-1)(sin((7pi)/4))

sin^(-1)(sin((9pi)/4))

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 1^(@) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The sum 1/(sin4 5^(@)sin4 6^(@))+1/(sin4 7^(@)sin4 8^(@)) +1/(sin 49^@...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |