Home
Class 12
MATHS
If cosec . (pi)/(32)+ cosec. (pi)/(16)+ ...

If `cosec . (pi)/(32)+ cosec. (pi)/(16)+ cosec. (pi)/(8)+ cosec. (pi)/(4)+ cosec. (pi)/(2)= cot. (pi)/(k)`, then the value of k is

A

64

B

96

C

48

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \csc\left(\frac{\pi}{32}\right) + \csc\left(\frac{\pi}{16}\right) + \csc\left(\frac{\pi}{8}\right) + \csc\left(\frac{\pi}{4}\right) + \csc\left(\frac{\pi}{2}\right) = \cot\left(\frac{\pi}{k}\right), \] we will use the identity that relates cosecant and cotangent. ### Step 1: Rewrite each cosecant in terms of cotangent We know that \[ \csc \theta = \frac{1}{\sin \theta} = \cot\left(\frac{\theta}{2}\right) - \cot \theta. \] Using this property, we can rewrite each term: 1. \(\csc\left(\frac{\pi}{32}\right) = \cot\left(\frac{\pi}{64}\right) - \cot\left(\frac{\pi}{32}\right)\) 2. \(\csc\left(\frac{\pi}{16}\right) = \cot\left(\frac{\pi}{32}\right) - \cot\left(\frac{\pi}{16}\right)\) 3. \(\csc\left(\frac{\pi}{8}\right) = \cot\left(\frac{\pi}{16}\right) - \cot\left(\frac{\pi}{8}\right)\) 4. \(\csc\left(\frac{\pi}{4}\right) = \cot\left(\frac{\pi}{8}\right) - \cot\left(\frac{\pi}{4}\right)\) 5. \(\csc\left(\frac{\pi}{2}\right) = \cot\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{2}\right)\) Since \(\cot\left(\frac{\pi}{2}\right) = 0\), we can simplify: \[ \csc\left(\frac{\pi}{2}\right) = \cot\left(\frac{\pi}{4}\right). \] ### Step 2: Combine all terms Now substituting these into the left-hand side (LHS): \[ \begin{align*} \text{LHS} &= \left(\cot\left(\frac{\pi}{64}\right) - \cot\left(\frac{\pi}{32}\right)\right) + \left(\cot\left(\frac{\pi}{32}\right) - \cot\left(\frac{\pi}{16}\right)\right) + \left(\cot\left(\frac{\pi}{16}\right) - \cot\left(\frac{\pi}{8}\right)\right) \\ &\quad + \left(\cot\left(\frac{\pi}{8}\right) - \cot\left(\frac{\pi}{4}\right)\right) + \cot\left(\frac{\pi}{4}\right). \end{align*} \] ### Step 3: Simplify the expression Notice that all intermediate cotangent terms cancel out: \[ \text{LHS} = \cot\left(\frac{\pi}{64}\right) - \cot\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = \cot\left(\frac{\pi}{64}\right). \] ### Step 4: Set LHS equal to RHS Now we have: \[ \cot\left(\frac{\pi}{64}\right) = \cot\left(\frac{\pi}{k}\right). \] ### Step 5: Compare and solve for k From the equality of cotangents, we can conclude: \[ \frac{\pi}{k} = \frac{\pi}{64} \implies k = 64. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{64}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

If |cosec x|=(5pi)/(4)-|(x)/(2)AA x in(-2pi,2pi) , then the number of solutions are

The exact value of cos((2pi)/28)cosec((3pi)/28)+cos((6pi)/28)cosec((9pi)/28)+cos((18pi)/28)cosec((27pi)/28)

Compute cosec (13pi//12)

2sin^(2)""(pi)/(6)+cosec^(2)""(7pi)/(6) cos^(2)""(pi)/(3)=(3)/(2)

If a^2+2a+cosec^2(pi/2(a+x))=0 , then, find the values of a and x.

The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)/(7), is

int_(0)^(pi//2) " 1/cosec "(x-(pi)/(3)) dx=?

2sin((2 pi)/(6))+cosec^(2)((pi)/(6))*cos^(2)((pi)/(3))=?

If sin ^(-1)""(x)/(3) +cosec ^(-1) ""(13)/(12) = (pi)/(2) , then x is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If cosec . (pi)/(32)+ cosec. (pi)/(16)+ cosec. (pi)/(8)+ cosec. (pi)/(...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |