Home
Class 12
MATHS
Let S= sum(r=1)^(5) cos (2r-1) (pi)/(11)...

Let `S= sum_(r=1)^(5) cos (2r-1) (pi)/(11)` and `P=Pi_(r=1)^(4) cos (2^(r). (pi)/(15))`, then

A

`log_(s)P=-4`

B

`P=3S`

C

`cosec S gt cosec P`

D

`tan^(-1)P lt tan^(-1)S`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the values of \( S \) and \( P \) as defined in the question. ### Step 1: Calculate \( S \) The expression for \( S \) is given by: \[ S = \sum_{r=1}^{5} \cos\left( (2r-1) \frac{\pi}{11} \right) \] Calculating the individual terms: - For \( r = 1 \): \( \cos\left( \frac{\pi}{11} \right) \) - For \( r = 2 \): \( \cos\left( \frac{3\pi}{11} \right) \) - For \( r = 3 \): \( \cos\left( \frac{5\pi}{11} \right) \) - For \( r = 4 \): \( \cos\left( \frac{7\pi}{11} \right) \) - For \( r = 5 \): \( \cos\left( \frac{9\pi}{11} \right) \) Thus, we can write: \[ S = \cos\left( \frac{\pi}{11} \right) + \cos\left( \frac{3\pi}{11} \right) + \cos\left( \frac{5\pi}{11} \right) + \cos\left( \frac{7\pi}{11} \right) + \cos\left( \frac{9\pi}{11} \right) \] ### Step 2: Use the Cosine Sum Formula Using the identity for the sum of cosines, we can simplify the calculation. The sum of cosines can be expressed as: \[ \sum_{k=0}^{n-1} \cos\left( a + kd \right) = \frac{\sin\left( \frac{nd}{2} \right) \cos\left( a + \frac{(n-1)d}{2} \right)}{\sin\left( \frac{d}{2} \right)} \] For our case, \( a = \frac{\pi}{11} \), \( d = \frac{2\pi}{11} \), and \( n = 5 \): \[ S = \frac{\sin\left( \frac{5 \cdot \frac{2\pi}{11}}{2} \right) \cos\left( \frac{\pi}{11} + \frac{(5-1) \cdot \frac{2\pi}{11}}{2} \right)}{\sin\left( \frac{\frac{2\pi}{11}}{2} \right)} \] Calculating this gives: \[ S = \frac{\sin\left( \frac{5\pi}{11} \right) \cos\left( \frac{9\pi}{11} \right)}{\sin\left( \frac{\pi}{11} \right)} \] ### Step 3: Calculate \( P \) The expression for \( P \) is given by: \[ P = \prod_{r=1}^{4} \cos\left( 2^r \frac{\pi}{15} \right) \] Calculating the individual terms: - For \( r = 1 \): \( \cos\left( \frac{2\pi}{15} \right) \) - For \( r = 2 \): \( \cos\left( \frac{4\pi}{15} \right) \) - For \( r = 3 \): \( \cos\left( \frac{8\pi}{15} \right) \) - For \( r = 4 \): \( \cos\left( \frac{16\pi}{15} \right) \) Thus, we can write: \[ P = \cos\left( \frac{2\pi}{15} \right) \cdot \cos\left( \frac{4\pi}{15} \right) \cdot \cos\left( \frac{8\pi}{15} \right) \cdot \cos\left( \frac{16\pi}{15} \right) \] ### Step 4: Use Product-to-Sum Formulas Using the product-to-sum identities, we can express \( P \) in terms of sine functions: \[ P = \frac{1}{2^4} \cdot \frac{\sin\left( \frac{32\pi}{15} \right)}{\sin\left( \frac{2\pi}{15} \right)} \] ### Step 5: Compare \( S \) and \( P \) From the calculations, we find: - \( S = \frac{\sin\left( \frac{5\pi}{11} \right) \cos\left( \frac{9\pi}{11} \right)}{\sin\left( \frac{\pi}{11} \right)} \) - \( P = \frac{1}{16} \cdot \frac{\sin\left( \frac{32\pi}{15} \right)}{\sin\left( \frac{2\pi}{15} \right)} \) ### Conclusion By comparing \( S \) and \( P \), we conclude that: \[ \tan^{-1}(S) > \tan^{-1}(P) \] Thus, the correct option is \( \tan^{-1}(P) < \tan^{-1}(S) \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A= sum _(r=1)^(3)"cos"(2r pi)/(7) and B=sum_(r=1)^(3)"cos"(2^(r )pi)/(7) , then :

Let x_1=prod_(r=1)^5cos(rpi)/(11)\ a n d\ x_2=sum_(r=1)^2cos(rpi)/(11), then show that x_1dotx_2=1/(64)(cos e c\ pi/(22)),\ w h e r e\ prod\ denotes the continued product.

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

If sum_(r=15)^29(cos(rpi/2+theta)=S_1 and sum_(r=15)^29(sin(rpi/2+theta)=S_2 , then S_1/S_2 equals

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

Statement I Pi_(r=1)^(n) (1+sec 2^(r)theta)=tan 2^(n)theta cot theta Statement II Pi_(r=1)^(n) cos (2^(r-1)theta)=(sin(2^(n)theta))/(2^(n)sin theta)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let S= sum(r=1)^(5) cos (2r-1) (pi)/(11) and P=Pi(r=1)^(4) cos (2^(r)....

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |